
UFS Short-Range Weather App UsersGuide
Release v1.0

Mar 03, 2021

CONTENTS

1 Introduction 1
1.1 Pre-processor Utilities and Initial Conditions . 1
1.2 Forecast Model . 2
1.3 Post-processor . 3
1.4 Visualization Example . 3
1.5 Build System and Workflow . 3
1.6 User Support, Documentation, and Contributing Development 4
1.7 Future Direction . 5
1.8 How to Use This Document . 5

2 Workflow Quick Start 7
2.1 Download the UFS SRW Application Code . 7
2.2 Set up the Build Environment . 8
2.3 Build the Executables . 8
2.4 Generate the Workflow Experiment . 8

2.4.1 Set up config.sh file . 9
2.4.2 Set up the Python and other Environment Parameters 10
2.4.3 Run the generate_FV3LAM_wflow.sh script 10

2.5 Run the Workflow Using Rocoto . 10
2.6 Plot the Output . 13

3 Code Repositories and Directory Structure 15
3.1 Hierarchical Repository Structure . 15
3.2 Directory Structure . 16

3.2.1 Regional Workflow Sub-Directories . 17
3.3 Experiment Directory Structure . 17

4 Short-Range Weather Application Overview 21
4.1 Download from GitHub . 21
4.2 External Components . 23
4.3 Building the Executables for the Application . 23
4.4 Grid-specific Configuration . 24
4.5 Case-specific Configuration . 25

4.5.1 Default configuration: config_defaults.sh 25
4.5.2 User-specific configuration: config.sh . 27

i

4.6 Python Environment for Workflow . 28
4.7 Generating a Regional Workflow Experiment . 29

4.7.1 Steps to a Generate a New Experiment . 29
4.7.2 Description of Workflow Tasks . 29

4.8 Launch of Workflow . 32
4.8.1 Launch with the launch_FV3LAM_wflow.sh script 32
4.8.2 Manually launch by calling the rocotorun command 34
4.8.3 Run the Workflow Using the Stand-alone Scripts 35

5 Configuring the Workflow: config.sh and config_defaults.sh 37
5.1 Platform Environment . 37
5.2 Parameters for Running Without a Workflow Manager 39
5.3 Cron-Associated Parameters . 39
5.4 Directory Parameters . 40
5.5 NCO Mode Parameters . 40
5.6 Pre-Processing File Separator Parameters . 41
5.7 File Name Parameters . 41
5.8 Foreast Parameters . 42
5.9 Initial and Lateral Boundary Condition Generation Parameters 43
5.10 User-Staged External Model Directory and File Parameters 43
5.11 CCPP Parameter . 44
5.12 Grid Generation Parameters . 44
5.13 Computational Forecast Parameters . 45
5.14 Write-Component (Quilting) Parameters . 45
5.15 Predefined Grid Parameters . 46
5.16 Pre-existing Directory Parameter . 47
5.17 Verbose Parameter . 47
5.18 Pre-Processing Parameters . 47
5.19 Surface Climatology Parameter . 48
5.20 Fixed File Parameters . 48
5.21 Workflow Task Parameters . 50
5.22 Customized Post Configuration Parameters . 52
5.23 Halo Blend Parameter . 52
5.24 FVCOM Parameter . 53
5.25 Compiler Parameter . 53

6 Limited Area Model (LAM) Grids: Predefined and User-Generated Options 55
6.1 Predefined Grids . 55
6.2 Creating User-Generated Grids . 59

7 Input and Output Files 63
7.1 Input Files . 63

7.1.1 Initial and Boundary Condition Files . 63
7.1.2 Pre-processing (UFS_UTILS) . 63
7.1.3 UFS Weather Model . 64
7.1.4 Unified Post Processor (UPP) . 64
7.1.5 Workflow . 64

7.2 Output Files . 67

ii

7.2.1 Initial and boundary condition files . 67
7.2.2 Pre-processing (UFS_UTILS) . 67
7.2.3 UFS Weather Model . 67
7.2.4 Unified Post Processor (UPP) . 68

7.3 Downloading and Staging Input Data . 69
7.3.1 Static Files . 69
7.3.2 Initial Condition Formats and Source . 69
7.3.3 Initial and Lateral Boundary Condition Organization 70
7.3.4 Default Initial and Lateral Boundary Conditions 71
7.3.5 Running the App for Different Dates . 71
7.3.6 Staging Initial Conditions Manually . 71
7.3.7 Coexistence of Multiple Files for the Same Date 72
7.3.8 Best Practices for Conserving Disk Space and Keeping Files Safe 73

8 Configuring a New Platform 75
8.1 Installing NCEPLIBS-external . 76
8.2 Installing NCEPLIBS . 77
8.3 Building the UFS Short-Range Weather Application (UFS SRW App) 78
8.4 Setting Up Your Python Environment . 79
8.5 Running Without a Workflow Manager: Generic Linux and macOS Platforms 80
8.6 Running on a New Platform with Rocoto Workflow Manager 82
8.7 Software/Operating System Requirements . 83

9 Workflow End-to-End (WE2E) Tests 85

10 Graphics Generation 89
10.1 Plotting output from one experiment . 91
10.2 Plotting differences from two experiments . 91
10.3 Submitting plotting scripts through a batch system 92

11 FAQ 95
11.1 How do I turn On/Off the Cycle-Independent Workflow Tasks 95
11.2 How do I define an experiment name? . 95
11.3 How do I change the Suite Definition File (SDF)? . 96
11.4 How do I restart a DEAD task? . 96
11.5 How do I change the grid? . 96

12 Additional Rocoto Information 97
12.1 rocotorun . 97
12.2 rocotostat . 98
12.3 rocotocheck . 100
12.4 rocotorewind . 101
12.5 rocotoboot . 102

13 Glossary 103

Bibliography 105

Index 107

iii

iv

CHAPTER
ONE

INTRODUCTION

The Unified Forecast System (UFS) is a community-based, coupled, comprehensive Earth mod-
eling system. It is designed to be the source system for NOAA’s operational numerical weather
prediction applications while enabling research, development, and contribution opportunities for
the broader weather enterprise. For more information about the UFS, visit the UFS Portal at
https://ufscommunity.org/.

The UFS can be configured for multiple applications (see a complete list at https://ufscommunity.
org/science/aboutapps/). The configuration described here is the UFS Short-Range Weather (SRW)
Application, which targets predictions of atmospheric behavior on a limited spatial domain and on
time scales from less than an hour out to several days. The SRW Application v1.0 release includes
a prognostic atmospheric model, pre- and post-processing, and a community workflow for running
the system end-to-end, which are documented within the User’s Guide and supported through
a community forum. Future work will include expanding the capabilities of the application to
include data assimilation (DA) and a verification package (e.g. METplus) as part of the workflow.
This documentation provides an overview of the release components, a description of the supported
capabilities, a quick start guide for running the application, and information on where to find more
information and obtain support.

The SRW App v1.0.0 citation is as follows and should be used when presenting results based on
research conducted with the App.

UFS Development Team. (2021, March 4). Unified Forecast System (UFS) Short-Range Weather
(SRW) Application (Version v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.4534994

1.1 Pre-processor Utilities and Initial Conditions
The SRW Application includes a number of pre-processing utilities to initialize and prepare the
model for integration. For the limited area model (LAM), it is necessary to first generate a re-
gional grid regional_esg_grid/make_hgrid along with orography orog and surface climatology
sfc_climo_gen files on that grid. There are additional utilities included to handle the correct
number of halo shave points and topography filtering filter_topo. The pre-processing software
chgres_cube is used to convert the raw external model data into initial and lateral boundary con-
dition files in netCDF format, needed as input to the FV3-LAM. Additional information about the
UFS pre-processor utilities can be found in the UFS_UTILS User’s Guide.

1

https://ufscommunity.org/
https://ufscommunity.org/science/aboutapps/
https://ufscommunity.org/science/aboutapps/
https://doi.org/10.5281/zenodo.4534994
https://noaa-emcufs-utils.readthedocs.io/en/ufs-v2.0.0/

UFS Short-Range Weather App Users Guide, Release v1.0

The SRW Application can be initialized from a range of operational initial condition files. It is pos-
sible to initialize the model from GFS, NAM, RAP, and HRRR files in Gridded Binary v2 (GRIB2)
format and GFS in NEMSIO format for past dates. Please note, for GFS data, dates prior to 1
January 2018 may work but are not guaranteed. Public archives of model data can be accessed
through the National Centers for Environmental Information (NCEI) or through the NOAA Op-
erational Model Archive and Distribution System (NOMADS). Raw external model data may be
pre-staged on disk by the user.

1.2 Forecast Model
The prognostic atmospheric model in the UFS SRW Application is the Finite-Volume Cubed-Sphere
(FV3) dynamical core configured with a Limited Area Model (LAM) capability [BAB+ed]. The
dynamical core is the computational part of a model that solves the equations of fluid motion. A
User’s Guide for the UFS Weather Model is here.

Supported model resolutions in this release include a 3-, 13-, and 25-km predefined Contiguous
U.S. (CONUS) domain, all with 64 vertical levels. Preliminary tools for users to define their own
domain are also available in the release with full, formal support of these tools to be provided in
future releases. The Extended Schmidt Gnomonic (ESG) grid is used with the FV3-LAM, which
features relatively uniform grid cells across the entirety of the domain. Additional information
about the FV3 dynamical core can be found here and on the NOAA Geophysical Fluid Dynamics
Laboratory website.

Interoperable atmospheric physics, along with the Noah Multi-parameterization (Noah MP) Land
Surface Model options, are supported through the Common Community Physics Package (CCPP;
described here). Atmospheric physics are a set of numerical methods describing small-scale pro-
cesses such as clouds, turbulence, radiation, and their interactions. There are two physics options
supported for the release. The first is an experimental physics suite being tested for use in the future
operational implementation of the Rapid Refresh Forecast System (RRFS) planned for 2023-2024,
and the second is an updated version of the physics suite used in the operational Global Forecast
System (GFS) v15. A scientific description of the CCPP parameterizations and suites can be found
in the CCPP Scientific Documentation, and CCPP technical aspects are described in the CCPP Tech-
nical Documentation. The model namelist has many settings beyond the physics options that can
optimize various aspects of the model for use with each of the supported suites.

The SRW App supports the use of both GRIB2 and NEMSIO input data. The UFS Weather Model
ingests initial and lateral boundary condition files produced by chgres_cube and outputs files in
NetCDF format on a specific projection (e.g., Lambert Conformal) in the horizontal and model
levels in the vertical.

2 Chapter 1. Introduction

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://nomads.ncep.noaa.gov/
https://nomads.ncep.noaa.gov/
https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/
https://noaa-emc.github.io/FV3_Dycore_ufs-v2.0.0/html/index.html
https://www.gfdl.noaa.gov/fv3/
https://www.gfdl.noaa.gov/fv3/
https://dtcenter.org/community-code/common-community-physics-package-ccpp
https://dtcenter.ucar.edu/GMTB/v5.0.0/sci_doc/index.html
https://ccpp-techdoc.readthedocs.io/en/v5.0.0/
https://ccpp-techdoc.readthedocs.io/en/v5.0.0/

UFS Short-Range Weather App Users Guide, Release v1.0

1.3 Post-processor
The SRW Application is distributed with the Unified Post Processor (UPP) included in the workflow
as a way to convert the NetCDF output on the native model grid to GRIB2 format on standard
isobaric vertical coordinates. UPP can also be used to compute a variety of useful diagnostic fields,
as described in the UPP user’s guide.

Output from UPP can be used with visualization, plotting, and verification packages, or for further
downstream post-processing, e.g. statistical post-processing techniques.

1.4 Visualization Example
A Python script is provided to create basic visualization of the model output. The script is designed
to output graphics in PNG format for 14 standard meteorological variables when using the pre-
defined CONUS domain. In addition, a difference plotting script is included to visually compare
two runs for the same domain and resolution. These scripts are provided only as an example for
users familiar with Python, and may be used to do a visual check to verify that the application is
producing reasonable results.

The scripts are available in the regional_workflow repository under ush/Python. Usage information
and instructions are described in Chapter 10 and are also included at the top of the script.

1.5 Build System andWorkflow
The SRW Application has a portable build system and a user-friendly, modular, and expandable
workflow framework.

An umbrella CMake-based build system is used for building the components necessary for running
the end-to-end SRW Application: the UFS Weather Model and the pre- and post-processing soft-
ware. Additional libraries (NCEPLIBS-external and NCEPLIBS) necessary for the application are not
included in the SRW Application build system, but are available pre-built on pre-configured plat-
forms. There is a small set of system libraries and utilities that are assumed to be present on the
target computer: the CMake build software, a Fortran, C, and C++ compiler, and MPI library.

Once built, the provided experiment generator script can be used to create a Rocoto-based workflow
file that will run each task in the system (see Rocoto documentation) in the proper sequence. If
Rocoto and/or a batch system is not present on the available platform, the individual components
can be run in a stand-alone, command line fashion with provided run scripts. The generated
namelist for the atmospheric model can be modified in order to vary settings such as forecast
starting and ending dates, forecast length hours, the CCPP physics suite, integration time step,
history file output frequency, and more. It also allows for configuration of other elements of the
workflow; for example, whether to run some or all of the pre-processing, forecast model, and
post-processing steps.

This SRW Application release has been tested on a variety of platforms widely used by researchers,
such as the NOAA Research and Development High-Performance Computing Systems (RDHPCS),
including Hera, Orion, and Jet; NOAA’s Weather and Climate Operational Supercomputing System

1.3. Post-processor 3

https://upp.readthedocs.io/en/upp-v9.0.0/
https://github.com/NOAA-EMC/regional_workflow/tree/release/public-v1/ush/Python
https://github.com/christopherwharrop/rocoto/wiki/Documentation

UFS Short-Range Weather App Users Guide, Release v1.0

(WCOSS); the National Center for Atmospheric Research (NCAR) Cheyenne system; NSSL’s HPC
machine, Odin; the National Science Foundation Stampede2 system; and generic Linux and macOS
systems using Intel and GNU compilers. Four levels of support have been defined for the SRW
Application, including pre-configured (level 1), configurable (level 2), limited test platforms (level
3), and build only platforms (level 4). Each level is further described below.

For the selected computational platforms that have been pre-configured (level 1), all the required
libraries for building the SRW Application are available in a central place. That means bundled
libraries (NCEPLIBS) and third-party libraries (NCEPLIBS-external) have both been built. The SRW
Application is expected to build and run out of the box on these pre-configured platforms and users
can proceed directly to the using the workflow, as described in the Quick Start (Chapter 2).

A few additional computational platforms are considered configurable for the SRW Application
release. Configurable platforms (level 2) are platforms where all of the required libraries for build-
ing the SRW Application are expected to install successfully, but are not available in a central
place. Applications and models are expected to build and run once the required bundled libraries
(NCEPLIBS) and third-party libraries (NCEPLIBS-external) are built.

Limited-Test (level 3) and Build-Only (level 4) computational platforms are those in which the
developers have built the code but little or no pre-release testing has been conducted, respectively.
A complete description of the levels of support, along with a list of preconfigured and configurable
platforms can be found in the SRW Application wiki page.

1.6 User Support, Documentation, and Contributing Development
A forum-based, online support system with topical sections provides a centralized location for UFS
users and developers to post questions and exchange information. The forum complements the
formal, written documentation, summarized here for ease of use.

A list of available documentation is shown in Table 1.1.

Table 1.1: Centralized list of documentation
Documentation Location
UFS SRW Application v1.0
User’s Guide

https://ufs-srweather-app.readthedocs.io/en/ufs-v1.0.0

UFS_UTILS v2.0 User’s Guide https://noaa-emcufs-utils.readthedocs.io/en/ufs-v2.0.0/
UFS Weather Model v2.0 User’s
Guide

https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0

NCEPLIBS Documentation https://github.com/NOAA-EMC/NCEPLIBS/wiki
NCEPLIBS-external Documenta-
tion

https://github.com/NOAA-EMC/NCEPLIBS-external/wiki

FV3 Documentation https://noaa-emc.github.io/FV3_Dycore_ufs-v2.0.0/html/
index.html

CCPP Scientific Documentation https://dtcenter.ucar.edu/GMTB/v5.0.0/sci_doc/index.html
CCPP Technical Documentation https://ccpp-techdoc.readthedocs.io/en/v5.0.0/
ESMF manual http://earthsystemmodeling.org/docs/release/ESMF_8_0_

0/ESMF_usrdoc/
Unified Post Processor https://upp.readthedocs.io/en/upp-v9.0.0/

4 Chapter 1. Introduction

https://github.com/ufs-community/ufs-srweather-app/wiki/Supported-Platforms-and-Compilers
https://github.com/ufs-community/ufs-srweather-app/wiki/Supported-Platforms-and-Compilers
https://forums.ufscommunity.org
https://ufs-srweather-app.readthedocs.io/en/ufs-v1.0.0
https://noaa-emcufs-utils.readthedocs.io/en/ufs-v2.0.0/
https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0
https://github.com/NOAA-EMC/NCEPLIBS/wiki
https://github.com/NOAA-EMC/NCEPLIBS-external/wiki
https://noaa-emc.github.io/FV3_Dycore_ufs-v2.0.0/html/index.html
https://noaa-emc.github.io/FV3_Dycore_ufs-v2.0.0/html/index.html
https://dtcenter.ucar.edu/GMTB/v5.0.0/sci_doc/index.html
https://ccpp-techdoc.readthedocs.io/en/v5.0.0/
http://earthsystemmodeling.org/docs/release/ESMF_8_0_0/ESMF_usrdoc/
http://earthsystemmodeling.org/docs/release/ESMF_8_0_0/ESMF_usrdoc/
https://upp.readthedocs.io/en/upp-v9.0.0/

UFS Short-Range Weather App Users Guide, Release v1.0

The UFS community is encouraged to contribute to the development effort of all related utilities,
model code, and infrastructure. Issues can be posted in the GitHub repository for the SRW Appli-
cation or the relevant subcomponent to report bugs or to announce upcoming contributions to the
code base. For code to be accepted in the authoritative repositories, the code management rules of
each component (described in the User’s Guides listed in Table 1.1 need to be followed.

1.7 Future Direction
Users can expect to see incremental improvements and additional capabilities in upcoming releases
of the SRW Application to enhance research opportunities and support operational forecast imple-
mentations. Planned advancements include:

• A more extensive set of supported developmental physics suites.

• A larger number of pre-defined domains/resolutions and a fully supported capability to create
a user-defined domain.

• Inclusion of data assimilation, cycling, and ensemble capabilities.

• A verification package (i.e., METplus) integrated into the workflow.

• Inclusion of stochastic perturbation techniques.

In addition to the above list, other improvements will be addressed in future releases.

1.8 How to Use This Document
This guide instructs both novice and experienced users on downloading, building and running the
SRW Application. Please post questions in the UFS forum at https://forums.ufscommunity.org/.

Throughout the guide, this presentation style indicates shell
commands and options, code examples, etc.

Note: Variables presented as AaBbCc123 in this document typically refer to variables in scripts,
names of files and directories.

1.7. Future Direction 5

https://forums.ufscommunity.org/

UFS Short-Range Weather App Users Guide, Release v1.0

6 Chapter 1. Introduction

CHAPTER
TWO

WORKFLOWQUICK START

To build and run the out-of-the-box case of the UFS Short-Range Weather (SRW) Application the
user must get the source code for multiple components, including: the regional workflow, the
UFS_UTILS pre-processor utilities, the UFS Weather Model, and the Unified Post Processor (UPP).
Once the UFS SRW Application umbrella repository is cloned, obtaining the necessary external
repositories is simplified by the use of manage_externals. The out-of-the-box case uses a predefined
25-km CONUS grid (RRFS_CONUS_25km), the GFS version 15.2 physics suite (FV3_GFS_v15p2
CCPP), and FV3-based GFS raw external model data for initialization.

Note: The steps described in this chapter are applicable to preconfigured (Level 1) machines
where all of the required libraries for building community releases of UFS models and applications
are available in a central place (i.e. the bundled libraries (NCEPLIBS) and third-party libraries
(NCEPLIBS-external) have both been built). The Level 1 platforms are listed here. For more in-
formation on compiling NCEPLIBS-external and NCEPLIBS, please refer to the NCEPLIBS-external
wiki.

2.1 Download the UFS SRW Application Code
The necessary source code is publicly available on GitHub. To clone the release branch of the
repository:

git clone -b ufs-v1.0.0 https://github.com/ufs-community/ufs-srweather-app.git
cd ufs-srweather-app

Then, check out the submodules for the SRW application:

./manage_externals/checkout_externals

The checkout_externals script uses the configuration file Externals.cfg in the top level directory
and will clone the regional workflow, pre-processing utilities, UFS Weather Model, and UPP source
code into the appropriate directories under your regional_workflow and src directories.

7

https://github.com/ufs-community/ufs-srweather-app/wiki/Supported-Platforms-and-Compilers
https://github.com/NOAA-EMC/NCEPLIBS-external/wiki

UFS Short-Range Weather App Users Guide, Release v1.0

2.2 Set up the Build Environment
Instructions for loading the proper modules and/or setting the correct environment variables can
be found in the env/ directory in files named build_<platform>_<compiler>.env. The commands
in these files can be directly copy-pasted to the command line or the file can be sourced. You may
need to modify certain variables such as the path to NCEP libraries for your individual platform, or
use setenv rather than export depending on your environment:

$ ls -l env/
-rw-rw-r-- 1 user ral 466 Jan 21 10:09 build_cheyenne_intel.env
-rw-rw-r-- 1 user ral 461 Jan 21 10:09 build_hera_intel.env
-rw-rw-r-- 1 user ral 543 Jan 21 10:09 build_jet_intel.env

2.3 Build the Executables
Build the executables as follows:

mkdir build
cd build

Run cmake to set up the Makefile, then run make:

cmake .. -DCMAKE_INSTALL_PREFIX=..
make -j 4 >& build.out &

Output from the build will be in the ufs-srweather-app/build/build.out file. When the build
completes, you should see the forecast model executable NEMS.exe and eleven pre- and post-
processing executables in the ufs-srweather-app/bin directory which are described in Table 4.2.

2.4 Generate the Workflow Experiment
Generating the workflow experiment requires three steps:

• Set experiment parameters in config.sh

• Set Python and other environment parameters

• Run the generate_FV3LAM_wflow.sh script

The first two steps depend on the platform being used and are described here for each Level 1
platform.

8 Chapter 2. Workflow Quick Start

UFS Short-Range Weather App Users Guide, Release v1.0

2.4.1 Set up config.sh file
The workflow requires a file called config.sh to specify the values of your experiment parameters.
Two example templates are provided: config.community.sh and config.nco.sh and can be found
in the ufs-srweather-app/regional_workflow/ush directory. The first file is a minimal example
for creating and running an experiment in the community mode (with RUN_ENVIR set to community),
while the second is an example of creating and running an experiment in the NCO (operational)
mode (with RUN_ENVIR set to nco). The community mode is recommended in most cases and will
be fully supported for this release while the operational mode will be more exclusively used by
NOAA/NCEP Central Operations (NCO) and those in the NOAA/NCEP/Environmental Modeling
Center (EMC) working with NCO on pre-implementation testing. Sample config.sh files are dis-
cussed in this section for Level 1 platforms.

Make a copy of config.community.sh to get started (under /path-to-ufs-srweather-
app/regional_workflow/ush):

cd ../regional_workflow/ush
cp config.community.sh config.sh

Edit the config.sh file to set the machine you are running on to MACHINE, use an account you can
charge for ACCOUNT, and set the name of the experiment with EXPT_SUBDIR. If you have access to the
NOAA HPSS from the machine you are running on, those changes should be sufficient; however,
if that is not the case (for example, on Cheyenne), or if you have pre-staged the initialization data
you would like to use, you will also want to set USE_USER_STAGED_EXTRN_FILES="TRUE" and set the
paths to the data for EXTRN_MDL_SOURCE_BASEDIR_ICS and EXTRN_MDL_SOURCE_BASEDIR_LBCS.

At a minimum, the following parameters should be set for the machine you are using:

For Cheyenne:

MACHINE="cheyenne"
ACCOUNT="my_account"
EXPT_SUBDIR="my_expt_name"
USE_USER_STAGED_EXTRN_FILES="TRUE"
EXTRN_MDL_SOURCE_BASEDIR_ICS="/glade/p/ral/jntp/UFS_SRW_app/model_data/FV3GFS"
EXTRN_MDL_SOURCE_BASEDIR_LBCS="/glade/p/ral/jntp/UFS_SRW_app/model_data/FV3GFS"

For Hera:

MACHINE="hera"
ACCOUNT="my_account"
EXPT_SUBDIR="my_expt_name"

For Jet:

MACHINE="jet"
ACCOUNT="my_account"
EXPT_SUBDIR="my_expt_name"

For Orion:

2.4. Generate the Workflow Experiment 9

UFS Short-Range Weather App Users Guide, Release v1.0

MACHINE="orion"
ACCOUNT="my_account"
EXPT_SUBDIR="my_expt_name"

For Gaea:

MACHINE="gaea"
ACCOUNT="my_account"
EXPT_SUBDIR="my_expt_name"

For WCOSS, edit config.sh with these WCOSS-specific parameters, and use a valid WCOSS project
code for the account parameter:

MACHINE=”wcoss_cray” or MACHINE=”wcoss_dell_p3”
ACCOUNT="my_account"
EXPT_SUBDIR="my_expt_name"

2.4.2 Set up the Python and other Environment Parameters
Next, it is necessary to load the appropriate Python environment for the workflow. The workflow
requires Python 3, with the packages ‘PyYAML’, ‘Jinja2’, and ‘f90nml’ available. This Python envi-
ronment has already been set up on Level 1 platforms, and can be activated in the following way
(when in /path-to-ufs-srweather-app/regional_workflow/ush):

source ../../env/wflow_<platform>.env

2.4.3 Run the generate_FV3LAM_wflow.sh script
For all platforms, the workflow can then be generated with the command:

./generate_FV3LAM_wflow.sh

The generated workflow will be in $EXPTDIR, where EXPTDIR=${EXPT_BASEDIR}/${EXPT_SUBDIR}.
A log file called log.generate_FV3LAM_wflow is generated by this step and can also be
found in $EXPTDIR. The settings for these paths can be found in the output from the ./
generate_FV3LAM_wflow.sh script.

2.5 Run the Workflow Using Rocoto
The information in this section assumes that Rocoto is available on the desired platform. If Ro-
coto is not available, it is still possible to run the workflow using stand-alone scripts described
in Section 4.8.3. There are two ways you can run the workflow with Rocoto using either the
./launch_FV3LAM_wflow.sh or by hand.

An environment variable may be set to navigate to the $EXPTDIR more easily. If the login shell is
bash, it can be set as follws:

10 Chapter 2. Workflow Quick Start

UFS Short-Range Weather App Users Guide, Release v1.0

export EXPTDIR=/path-to-experiment/directory

Or if the login shell is csh/tcsh, it can be set using:

setenv EXPTDIR /path-to-experiment/directory

To run Rocoto using the script:

cd $EXPTDIR
./launch_FV3LAM_wflow.sh

Once the workflow is launched with the launch_FV3LAM_wflow.sh script, a log file named log.
launch_FV3LAM_wflow will be created (or appended to it if it already exists) in EXPTDIR.

Or to manually call Rocoto:

First load the Rocoto module, depending on the platform used.

For Cheyenne:

module use -a /glade/p/ral/jntp/UFS_SRW_app/modules/
module load rocoto

For Hera or Jet:

module purge
module load rocoto

For Orion:

module purge
module load contrib rocoto

For Gaea:

module use /lustre/f2/pdata/esrl/gsd/contrib/modulefiles
module load rocoto/1.3.3

For WCOSS_DELL_P3:

module purge
module load lsf/10.1
module use /gpfs/dell3/usrx/local/dev/emc_rocoto/modulefiles/
module load ruby/2.5.1 rocoto/1.2.4

For WCOSS_DELL_P3:

module purge
module load xt-lsfhpc/9.1.3
module use -a /usrx/local/emc_rocoto/modulefiles
module load rocoto/1.2.4

2.5. Run the Workflow Using Rocoto 11

UFS Short-Range Weather App Users Guide, Release v1.0

Then manually call rocotorun to launch the tasks that have all dependencies satisfied and
rocotostat to monitor the progress:

cd $EXPTDIR
rocotorun -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10
rocotostat -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10

For automatic resubmission of the workflow (e.g., every 3 minutes), the following line can be added
to the user’s crontab (use crontab -e to edit the cron table).

*/3 * * * * cd /glade/p/ral/jntp/$USER/expt_dirs/test_CONUS_25km_GFSv15p2 && ./launch_FV3LAM_
→˓wflow.sh

Note: Currently cron is only available on the orion-login-1 node, so please use that node.

The workflow run is completed when all tasks have “SUCCEEDED”, and the rocotostat command
will output the following:

CYCLE TASK JOBID STATE EXIT STATUS ␣
→˓TRIES DURATION
==
201906150000 make_grid 4953154 SUCCEEDED 0 1 ␣
→˓ 5.0
201906150000 make_orog 4953176 SUCCEEDED 0 1 ␣
→˓ 26.0
201906150000 make_sfc_climo 4953179 SUCCEEDED 0 1 ␣
→˓ 33.0
201906150000 get_extrn_ics 4953155 SUCCEEDED 0 1 ␣
→˓ 2.0
201906150000 get_extrn_lbcs 4953156 SUCCEEDED 0 1 ␣
→˓ 2.0
201906150000 make_ics 4953184 SUCCEEDED 0 1 ␣
→˓ 16.0
201906150000 make_lbcs 4953185 SUCCEEDED 0 1 ␣
→˓ 71.0
201906150000 run_fcst 4953196 SUCCEEDED 0 1 ␣
→˓ 1035.0
201906150000 run_post_f000 4953244 SUCCEEDED 0 1 ␣
→˓ 5.0
201906150000 run_post_f001 4953245 SUCCEEDED 0 1 ␣
→˓ 4.0
...
201906150000 run_post_f048 4953381 SUCCEEDED 0 1 ␣
→˓ 7.0

12 Chapter 2. Workflow Quick Start

UFS Short-Range Weather App Users Guide, Release v1.0

2.6 Plot the Output
Two python scripts are provided to generate plots from the FV3-LAM post-processed GRIB2 output.
Information on how to generate the graphics can be found in Chapter 10.

2.6. Plot the Output 13

UFS Short-Range Weather App Users Guide, Release v1.0

14 Chapter 2. Workflow Quick Start

CHAPTER
THREE

CODE REPOSITORIES AND DIRECTORY STRUCTURE

This chapter describes the code repositories that comprise the UFS SRW Application, without de-
scribing any of the components in detail.

3.1 Hierarchical Repository Structure
The umbrella repository for the UFS SRW Application is named ufs-srweather-app and is available
on GitHub at https://github.com/ufs-community/ufs-srweather-app. An umbrella repository is
defined as a repository that houses external code, called “externals,” from additional repositories.
The UFS SRW Application includes the manage_externals tools along with a configuration file
called Externals.cfg, which describes the external repositories associated with this umbrella repo
(see Table 3.1).

Table 3.1: List of top-level repositories that comprise the UFS
SRW Application.

Repository Description Authoritative repository URL
Umbrella repository for the UFS Short-Range Weather
Application

https://github.com/ufs-community/
ufs-srweather-app

Repository for the UFS Weather Model https://github.com/ufs-community/
ufs-weather-model

Repository for the regional workflow https://github.com/NOAA-EMC/
regional_workflow

Repository for UFS utilities, including pre-processing,
chgres_cube, and more

https://github.com/NOAA-EMC/UFS_
UTILS

Repository for the Unified Post Processor (UPP) https://github.com/NOAA-EMC/
EMC_post

The UFS Weather Model contains a number of sub-repositories used by the model as documented
here.

Note that the prerequisite libraries (including NCEP Libraries and external libraries) are not in-
cluded in the UFS SRW Application repository. The source code for these components resides in
the repositories NCEPLIBS and NCEPLIBS-external.

These external components are already built on the preconfigured platforms listed here. However,
they must be cloned and built on other platforms according to the instructions provided in the wiki

15

https://github.com/ufs-community/ufs-srweather-app
https://github.com/ufs-community/ufs-srweather-app
https://github.com/ufs-community/ufs-srweather-app
https://github.com/ufs-community/ufs-weather-model
https://github.com/ufs-community/ufs-weather-model
https://github.com/NOAA-EMC/regional_workflow
https://github.com/NOAA-EMC/regional_workflow
https://github.com/NOAA-EMC/UFS_UTILS
https://github.com/NOAA-EMC/UFS_UTILS
https://github.com/NOAA-EMC/EMC_post
https://github.com/NOAA-EMC/EMC_post
https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/CodeOverview.html
https://github.com/NOAA-EMC/NCEPLIBS
https://github.com/NOAA-EMC/NCEPLIBS-external
https://github.com/ufs-community/ufs-srweather-app/wiki/Supported-Platforms-and-Compilers

UFS Short-Range Weather App Users Guide, Release v1.0

pages of those repositories: https://github.com/NOAA-EMC/NCEPLIBS/wiki and https://github.
com/NOAA-EMC/NCEPLIBS-external/wiki.

3.2 Directory Structure
The directory structure for the SRW Application is determined by the local_path settings in the
Externals.cfg file, which is in the directory where the umbrella repository has been cloned. After
manage_externals/checkout_externals is run, the specific GitHub repositories that are described
in Table 3.1 are cloned into the target subdirectories shown below. The directories that will be
created later by running the scripts are presented in parentheses. Some directories have been
removed for brevity.

ufs-srweather-app
(bin)
(build)
docs

UsersGuide
(include)
(lib)
manage_externals
regional_workflow

docs
UsersGuide

(fix)
jobs
modulefiles
scripts
tests

baseline_configs
ush

Python
rocoto
templates
wrappers

(share)
src

EMC_post
parm
sorc

ncep_post.fd
UFS_UTILS

sorc
chgres_cube.fd
fre-nctools.fd

| grid_tools.fd
orog_mask_tools.fd
sfc_climo_gen.fd

ush
ufs_weather_model

FV3

(continues on next page)

16 Chapter 3. Code Repositories and Directory Structure

https://github.com/NOAA-EMC/NCEPLIBS/wiki
https://github.com/NOAA-EMC/NCEPLIBS-external/wiki
https://github.com/NOAA-EMC/NCEPLIBS-external/wiki

UFS Short-Range Weather App Users Guide, Release v1.0

(continued from previous page)

atmos_cubed_sphere
ccpp

3.2.1 Regional Workflow Sub-Directories
Under the regional_workflow directory shown in Section 3.2 there are a number of sub-directories
that are created when the regional workflow is cloned. The contents of these sub-directories are
described in Table 3.2.

Table 3.2: Sub-directories of the regional workflow.
Directory Name Description
docs Users’ Guide Documentation
jobs J-job scripts launched by Rocoto
modulefiles Files used to load modules needed for building and running the workflow
scripts Run scripts launched by the J-jobs
tests Baseline experiment configuration
ush Utility scripts used by the workflow

3.3 Experiment Directory Structure
When the generate_FV3LAM_wflow.sh script is run, the user-defined experimental direc-
tory EXPTDIR=/path-to/ufs-srweather-app/../expt_dirs/${EXPT_SUBDIR} is created, where
EXPT_SUBDIR is specified in the config.sh file. The contents of the EXPTDIR directory, before the
workflow is run, is shown in Table 3.3.

3.3. Experiment Directory Structure 17

UFS Short-Range Weather App Users Guide, Release v1.0

Table 3.3: Files and sub-directory initially created in the ex-
perimental directory.

File Name Description
config.sh User-specified configuration file, see Section 4.5.2
data_table Cycle-independent input file (empty)
field_table Tracers in the forecast model
FV3LAM_wflow.xml Rocoto XML file to run the workflow
input.nml Namelist for the UFS Weather model
launch_FV3LAM_wflow.sh Symlink to the shell script of ufs-srweather-app/

regional_workflow/ush/launch_FV3LAM_wflow.sh that can
be used to (re)launch the Rocoto workflow. Each time
this script is called, it appends to a log file named log.
launch_FV3LAM_wflow.

log.generate_FV3LAM_wflow Log of the output from the experiment generation script
generate_FV3LAM_wflow.sh

nems.configure See NEMS configuration file
suite_{CCPP}.xml CCPP suite definition file used by the forecast model
var_defns.sh Shell script defining the experiment parameters. It contains all

of the primary parameters specified in the default and user-
specified configuration files plus many secondary parameters
that are derived from the primary ones by the experiment gen-
eration script. This file is sourced by various other scripts in
order to make all the experiment variables available to these
scripts.

YYYYMMDDHH Cycle directory (empty)

In addition, the community mode creates the fix_am and fix_lam directories in EXPTDIR. The
fix_lam directory is initially empty but will contain some fix (time-independent) files after the
grid, orography, and/or surface climatology generation tasks are run.

Table 3.4: Description of the fix directories
Direc-toryName

Description

fix_am Directory containing the global fix (time-independent) data files. The experiment gen-
eration script copies these files from a machine-dependent system directory.

fix_lam Directory containing the regional fix (time-independent) data files that describe the
regional grid, orography, and various surface climatology fields as well as symlinks to
pre-generated files.

Once the workflow is launched with the launch_FV3LAM_wflow.sh script, a log file named log.
launch_FV3LAM_wflow will be created (or appended to it if it already exists) in EXPTDIR. Once the
make_grid, make_orog, and make_sfc_climo tasks and the get_extrn_ics and get_extrn_lbc tasks
for the YYYYMMDDHH cycle have completed successfully, new files and sub-directories are created,
as described in Table 3.5.

18 Chapter 3. Code Repositories and Directory Structure

https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/InputsOutputs.html#field-table-file
https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/InputsOutputs.html#namelist-file-input-nml
https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/InputsOutputs.html#nems-configure-file

UFS Short-Range Weather App Users Guide, Release v1.0

Table 3.5: New directories and files created when the work-
flow is launched.

Directory/file Name Description
YYYYMMDDHH This is updated when the first cycle-specific workflow tasks are run,

which are get_extrn_ics and get_extrn_lbcs (they are launched
simultaneously for each cycle in the experiment). We refer to
this as a “cycle directory”. Cycle directories are created to con-
tain cycle-specific files for each cycle that the experiment runs.
If DATE_FIRST_CYCL and DATE_LAST_CYCL were different, and/or
CYCL_HRS contained more than one element in the config.sh file,
then more than one cycle directory would be created under the
experiment directory.

grid Directory generated by the make_grid task containing grid files for
the experiment

log Contains log files generated by the overall workflow and its various
tasks. Look in these files to trace why a task may have failed.

orog Directory generated by the make_orog task containing the orogra-
phy files for the experiment

sfc_climo Directory generated by the make_sfc_climo task containing the
surface climatology files for the experiment

FV3LAM_wflow.db
FV3LAM_wflow_lock.db

Database files that are generated when Rocoto is called (by the
launch script) to launch the workflow.

log.launch_FV3LAM_wflow This is the log file to which the launch script
launch_FV3LAM_wflow.sh appends its output each time it is
called. Take a look at the last 30–50 lines of this file to check the
status of the workflow.

The output files for an experiment are described in Section 7.2. The workflow tasks are described
in Section 4.7.2).

3.3. Experiment Directory Structure 19

UFS Short-Range Weather App Users Guide, Release v1.0

20 Chapter 3. Code Repositories and Directory Structure

CHAPTER
FOUR

SHORT-RANGEWEATHER APPLICATION OVERVIEW

The UFS Short-Range Weather Application (SRW App) is an umbrella repository that contains the
tool manage_externals to check out all of the components required for the application. Once the
build process is complete, all the files and executables necessary for a regional experiment are
located in the regional_workflow and bin directories, respectively, under the ufs-srweather-app
directory. Users can utilize the pre-defined domains or build their own domain (details provided
in Chapter 6). In either case, users must create/modify the case-specific (config.sh) and/or grid-
specific configuration files (set_predef_grid_params.sh). The overall procedure is shown in Figure
4.1, with the scripts to generate and run the workflow shown in red. The steps are as follows:

1. Clone the UFS Short Range Weather Application from GitHub.

2. Check out the external repositories.

3. Set up the build environment and build the regional workflow system using cmake/make.

4. Optional: Add new grid information to the set_predef_grid_param.sh configuration file and
update valid_param_vals.sh.

5. Modify the case-specific config.sh configuration file.

6. Load the python environment for the regional workflow

7. Generate a regional workflow experiment.

8. Run the regional workflow as needed.

Each step will be described in detail in the following sections.

4.1 Download from GitHub
Retrieve the UFS Short Range Weather Application (SRW App) repository from GitHub and check-
out the ufs-v1.0.0 tag:

git clone -b ufs-v1.0.0 https://github.com/ufs-community/ufs-srweather-app.git
cd ufs-srweather-app

The cloned repository contains the configuration files and sub-directories shown in Table 4.1.

21

UFS Short-Range Weather App Users Guide, Release v1.0

Fig. 4.1: Overall layout of the SRW App.

22 Chapter 4. Short-Range Weather Application Overview

UFS Short-Range Weather App Users Guide, Release v1.0

Table 4.1: Files and sub-directories of the ufs-srweather-app
repository.

File/directory Name Description
CMakeLists.txt Main cmake file for SRW App
Externals.cfg Tags of the GitHub repositories/branches for the external reposito-

ries
LICENSE.md CC0 license information
README.md Quick start guide
ufs_srweather_app_meta.h.inMeta information for SRW App which can be used by other packages
ufs_srweather_app.settings.inSRW App configuration summary
env Contains build and workflow environment files
docs Contains release notes, documentation, and Users’ Guide
manage_externals Utility for checking out external repositories
src Contains CMakeLists.txt; external repositories will be cloned in this

directory.

4.2 External Components
Check out the external repositories, including regional_workflow, ufs-weather-model, ufs_utils, and
emc_post for the SRW App.

./manage_externals/checkout_externals

This step will use the configuration Externals.cfg file in the ufs-srweather-app directory to clone
the specific tags (version of codes) of the external repositories as listed in Section 3.1.

4.3 Building the Executables for the Application
Before building the executables, the build environment must be set up for your specific platform.
Instructions for loading the proper modules and/or setting the correct environment variables can
be found in the env/ directory in files named build_<platform>_<compiler>.env. For the most
part, the commands in those files can be directly copied and pasted, but you may need to modify
certain variables such as the path to NCEP libraries for your specific platform. Here is a directory
listing example of these kinds of files:

$ ls -l env/
-rw-rw-r-- 1 user ral 1228 Oct 9 10:09 build_cheyenne_intel.env
-rw-rw-r-- 1 user ral 1134 Oct 9 10:09 build_hera_intel.env
-rw-rw-r-- 1 user ral 1228 Oct 9 10:09 build_jet_intel.env
...

The following steps will build the pre-processing utilities, forecast model, and post-processor:

4.2. External Components 23

UFS Short-Range Weather App Users Guide, Release v1.0

make dir
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=..
make -j 4 >& build.out &

where -DCMAKE_INSTALL_PREFIX specifies the location in which the bin, include, lib, and share
directories containing various components of the SRW App will be created, and its recommended
value .. denotes one directory up from the build directory. In the next line for the make call, -j
4 indicates the build will run in parallel with 4 threads. If this step is successful, the executables
listed in Table 4.2 will be located in the ufs-srweather-app/bin directory.

Table 4.2: Names and descriptions of the executables pro-
duced by the build step and used by the SRW App.

ExecutableName Description
chgres_cube Reads in raw external model (global or regional) and surface climatology data to

create initial and lateral boundary conditions
filter_topo Filters topography based on resolution
global_equiv_resolCalculates a global, uniform, cubed-sphere equivalent resolution for the regional

Extended Schmidt Gnomonic (ESG) grid
make_solo_mosaicCreates mosaic files with halos
ncep_post Post-processor for the model output
NEMS.exe UFS Weather Model executable
orog Generates orography, land mask, and gravity wave drag files from fixed files
re-
gional_esg_grid

Generates an ESG regional grid based on a user-defined namelist

sfc_climo_gen Creates surface climatology fields from fixed files for use in chgres_cube

shave Shaves the excess halo rows down to what is required for the LBCs in the orogra-
phy and grid files

vcoord_gen Generates hybrid coordinate interface profiles

4.4 Grid-specific Configuration
Some SRW App parameters depend on the characteristics of the grid such as resolution and do-
main size. These include ESG grid and Input configuration as well as the variables related
to the write component (quilting). The SRW App officially supports three different predefined
grids as shown in Table 4.3. Their names can be found under valid_vals_PREDEF_GRID_NAME
in the valid_param_vals script, and their grid-specific configuration variables are specified in
the set_predef_grid_params script. If users want to create a new domain, they should put
its name in the valid_param_vals script and the corresponding grid-specific parameters in the
set_predef_grid_params script. More information on the predefined and user-generated options
can be found in Chapter 6.

24 Chapter 4. Short-Range Weather Application Overview

UFS Short-Range Weather App Users Guide, Release v1.0

Table 4.3: Predefined grids in the SRW App.
Grid Name Grid Type Quilting (write component)
RRFS_CONUS_25km ESG grid lambert_conformal
RRFS_CONUS_13km ESG grid lambert_conformal
RRFS_CONUS_3km ESG grid lambert_conformal

4.5 Case-specific Configuration
4.5.1 Default configuration: config_defaults.sh
When generating a new experiment (described in detail in Section 4.7), the config_defaults.sh
file is read first and assigns default values to the experiment parameters. Important configuration
variables in the config_defaults.sh file are shown in Table 4.4, with more documentation found
in the file itself, and in Chapter 5. Some of these default values are intentionally invalid in order to
ensure that the user assigns valid values in the user-specified configuration config.sh file. There-
fore, any settings provided in config.sh will override the default config_defaults.sh settings.
Note that there is usually no need for a user to modify the default configuration file.

4.5. Case-specific Configuration 25

UFS Short-Range Weather App Users Guide, Release v1.0

Table 4.4: Configuration variables specified in the con-
fig_defaults.sh script.

GroupName Configuration variables
Ex-
per-
i-
ment
mode

RUN_ENVIR

Ma-
chine
and
queue

MACHINE, ACCOUNT, SCHED, PARTITION_DEFAULT, QUEUE_DEFAULT, PARTI-
TION_HPSS, QUEUE_HPSS, PARTITION_FCST, QUEUE_FCST

Cron USE_CRON_TO_RELAUNCH, CRON_RELAUNCH_INTVL_MNTS
Ex-
per-
i-
ment
Dir.

EXPT_BASEDIR, EXPT_SUBDIR

NCO
mode

COMINgfs, STMP, NET, envir, RUN, PTMP

Sep-
ara-
tor

DOT_OR_USCORE

File
name

EXPT_CONFIG_FN, RGNL_GRID_NML_FN, DATA_TABLE_FN, DIAG_TABLE_FN,
FIELD_TABLE_FN, FV3_NML_BASE_SUITE_FN, FV3_NML_YALM_CONFIG_FN,
FV3_NML_BASE_ENS_FN, MODEL_CONFIG_FN, NEMS_CONFIG_FN, FV3_EXEC_FN,
WFLOW_XML_FN, GLOBAL_VAR_DEFNS_FN, EXTRN_MDL_ICS_VAR_DEFNS_FN,
EXTRN_MDL_LBCS_VAR_DEFNS_FN, WFLOW_LAUNCH_SCRIPT_FN,
WFLOW_LAUNCH_LOG_FN

Fore-
cast

DATE_FIRST_CYCL, DATE_LAST_CYCL, CYCL_HRS, FCST_LEN_HRS

IC/LBCEXTRN_MDL_NAME_ICS, EXTRN_MDL_NAME_LBCS, LBC_SPEC_INTVL_HRS,
FV3GFS_FILE_FMT_ICS, FV3GFS_FILE_FMT_LBCS

NO-
MADS

NOMADS, NOMADS_file_type

Ex-
ter-
nal
model

USE_USER_STAGED_EXTRN_FILES, EXTRN_MDL_SOURCE_BASEDRI_ICS,
EXTRN_MDL_FILES_ICS, EXTRN_MDL_SOURCE_BASEDIR_LBCS, EX-
TRN_MDL_FILES_LBCS

CCPP CCPP_PHYS_SUITE
GRID GRID_GEN_METHOD
ESG
grid

ESGgrid_LON_CTR, ESGgrid_LAT_CTR, ESGgrid_DELX, ESGgrid_DELY, ESGgrid_NX,
ESGgrid_NY, ESGgrid_WIDE_HALO_WIDTH

In-
put
con-
fig-
ura-
tion

DT_ATMOS, LAYOUT_X, LAYOUT_Y, BLOCKSIZE, QUILTING, PRINT_ESMF,
WRTCMP_write_groups, WRTCMP_write_tasks_per_group, WRTCMP_output_grid,
WRTCMP_cen_lon, WRTCMP_cen_lat, WRTCMP_lon_lwr_left, WRTCMP_lat_lwr_left,
WRTCMP_lon_upr_rght, WRTCMP_lat_upr_rght, WRTCMP_dlon, WRTCMP_dlat,
WRTCMP_stdlat1, WRTCMP_stdlat2, WRTCMP_nx, WRTCMP_ny, WRTCMP_dx,
WRTCMP_dy

Pre-
existing
grid

PREDEF_GRID_NAME, PREEXISTING_DIR_METHOD, VERBOSE

Cycle-
independent

RUN_TASK_MAKE_GRID, GRID_DIR, RUN_TASK_MAKE_OROG, OROG_DIR,
RUN_TASK_MAKE_SFC_CLIMO, SFC_CLIMO_DIR

Sur-
face
cli-
ma-
tol-
ogy

SFC_CLIMO_FIELDS, FIXgsm, TOPO_DIR, SFC_CLIMO_INPUT_DIR,
FNGLAC, FNMXIC, FNTSFC, FNSNOC, FNZORC, FNAISC,
FNSMCC, FNMSKH, FIXgsm_FILES_TO_COPY_TO_FIXam,
FV3_NML_VARNAME_TO_FIXam_FILES_MAPPING, FV3_NML_VARNAME_TO_SFC_CLIMO_FIELD_MAPPING,
CYCLEDIR_LINKS_TO_FIXam_FILES_MAPPING

Work-
flow
task

MAKE_GRID_TN, MAKE_OROG_TN, MAKE_SFC_CLIMO_TN, GET_EXTRN_ICS_TN,
GET_EXTRN_LBCS_TN, MAKE_ICS_TN, MAKE_LBCS_TN, RUN_FCST_TN,
RUN_POST_TN

NODE NNODES_MAKE_GRID, NNODES_MAKE_OROG, NNODES_MAKE_SFC_CLIMO, NN-
ODES_GET_EXTRN_ICS, NNODES_GET_EXTRN_LBCS, NNODES_MAKE_ICS, NN-
ODES_MAKE_LBCS, NNODES_RUN_FCST, NNODES_RUN_POST

MPI
pro-
cesses

PPN_MAKE_GRID, PPN_MAKE_OROG, PPN_MAKE_SFC_CLIMO, PPN_GET_EXTRN_ICS,
PPN_GET_EXTRN_LBCS, PPN_MAKE_ICS, PPN_MAKE_LBCS, PPN_RUN_FCST,
PPN_RUN_POST

Wall-
time

WTIME_MAKE_GRID, WTIME_MAKE_OROG, WTIME_MAKE_SFC_CLIMO,
WTIME_GET_EXTRN_ICS, WTIME_GET_EXTRN_LBCS, WTIME_MAKE_ICS,
WTIME_MAKE_LBCS, WTIME_RUN_FCST, WTIME_RUN_POST

Max-
i-
mum
at-
tempt

MAXTRIES_MAKE_GRID, MAXTRIES_MAKE_OROG, MAXTRIES_MAKE_SFC_CLIMO,
MAXTRIES_GET_EXTRN_ICS, MAXTRIES_GET_EXTRN_LBCS, MAXTRIES_MAKE_ICS,
MAXTRIES_MAKE_LBCS, MAXTRIES_RUN_FCST, MAXTRIES_RUN_POST

Post
con-
fig-
ura-
tion

USE_CUSTOM_POST_CONFIG_FILE, CUSTOM_POST_CONFIG_FP

Run-
ning
en-
sem-
bles

DO_ENSEMBLE, NUM_ENS_MEMBERS

Stochas-
tic
physics

DO_SHUM, DO_SPPT, DO_SKEB, SHUM_MAG, SHUM_LSCALE, SHUM_TSCALE,
SHUM_INT, SPPT_MAG, SPPT_LSCALE, SPPT_TSCALE, SPPT_INT, SKEB_MAG,
SKEB_LSCALE, SKEP_TSCALE, SKEB_INT, SKEB_VDOF, USE_ZMTNBLCK

Bound-
ary
blend-
ing

HALO_BLEND

FV-
COM

USE_FVCOM, FVCOM_DIR, FVCOM_FILE

Com-
piler

COMPILER

26 Chapter 4. Short-Range Weather Application Overview

UFS Short-Range Weather App Users Guide, Release v1.0

4.5.2 User-specific configuration: config.sh
Before generating an experiment, the user must create a config.sh file in the ufs-srweather-app/
regional_workflow/ush directory by copying either of the example configuration files, config.
community.sh for the community mode or config.nco.sh for the NCO mode, or creating their own
config.sh file. Note that the community mode is recommended in most cases and will be fully
supported for this release while the operational/NCO mode will be more exclusively used by those
at the NOAA/NCEP/Environmental Modeling Center (EMC) and the NOAA/Global Systems Labo-
ratory (GSL) working on pre-implementation testing. Table 4.5 shows the configuration variables,
along with their default values in config_default.sh and the values defined in config.community.
sh.

Note: The values of the configuration variables should be consistent with those in the
valid_param_vals script. In addition, various example configuration files can be found in the
regional_workflow/tests/baseline_configs directory.

4.5. Case-specific Configuration 27

UFS Short-Range Weather App Users Guide, Release v1.0

Table 4.5: Configuration variables specified in the con-
fig.community.sh script.

Parameter DefaultValue ``config.community.sh`` Value
MACHINE “BIG_COMPUTER”“hera”
ACCOUNT “project_name” “an_account”
EXPT_SUBDIR “” “test_CONUS_25km_GFSv15p2”
VERBOSE “TRUE” “TRUE”
RUN_ENVIR “nco” “community”
PREEXIST-
ING_DIR_METHOD

“delete” “rename”

PREDEF_GRID_NAME “” “RRFS_CONUS_25km”
GRID_GEN_METHOD “ESGgrid” “ESGgrid”
QUILTING “TRUE” “TRUE”
CCPP_PHYS_SUITE “FV3_GSD_V0” “FV3_GFS_v15p2”
FCST_LEN_HRS “24” “48”
LBC_SPEC_INTVL_HRS “6” “6”
DATE_FIRST_CYCL “YYYYM-

MDD”
“20190615”

DATE_LAST_CYCL “YYYYM-
MDD”

“20190615”

CYCL_HRS (“HH1”
“HH2”)

“00”

EXTRN_MDL_NAME_ICS “FV3GFS” “FV3GFS”
EXTRN_MDL_NAME_LBCS “FV3GFS” “FV3GFS”
FV3GFS_FILE_FMT_ICS “nemsio” “grib2”
FV3GFS_FILE_FMT_LBCS “nemsio” “grib2”
WTIME_RUN_FCST “04:30:00” “01:00:00”
USE_USER_STAGED_EXTRN_FILES“FALSE” “TRUE”
EX-
TRN_MDL_SOURCE_BASE_DIR_ICS

“” “/scratch2/BMC/det/UFS_SRW_app/v1p0/model_data/FV3GFS”

EXTRN_MDL_FILES_ICS “” “gfs.pgrb2.0p25.f000”
EX-
TRN_MDL_SOURCE_BASEDIR_LBCS

“” “/scratch2/BMC/det/UFS_SRW_app/v1p0/model_data/FV3GFS”

EXTRN_MDL_FILES_LBCS “” “gfs.pgrb2.0p25.f006”

4.6 Python Environment for Workflow
It is necessary to load the appropriate Python environment for the workflow. The workflow requires
Python 3, with the packages ‘PyYAML’, ‘Jinja2’, and ‘f90nml’ available. This Python environment
has already been set up on Level 1 platforms, and can be activated in the following way:

source ../../env/wflow_<platform>.env

when in the ufs-srweather-app/regional_workflow/ush directory.

28 Chapter 4. Short-Range Weather Application Overview

UFS Short-Range Weather App Users Guide, Release v1.0

4.7 Generating a Regional Workflow Experiment
4.7.1 Steps to a Generate a New Experiment
Generating an experiment requires running

generate_FV3LAM_wflow.sh

in the ufs-srweather-app/regional_workflow/ush directory. This is the all-in-one script for users
to set up their experiment with ease. Figure 4.2 shows the flowchart for generating an experiment.
First, it sets up the configuration parameters by running the setup.sh script. Second, it copies
the time-independent (fix) files and other necessary input files such as data_table, field_table,
nems.configure, model_configure, and the CCPP suite file from its location in the ufs-weather-
model directory to the experiment directory (EXPTDIR). Third, it copies the weather model exe-
cutable (NEMS.exe) from the bin directory to EXPTDIR, and creates the input namelist file input.nml
based on the input.nml.FV3 file in the regional_workflow/ush/templates directory. Lastly, it cre-
ates the workflow XML file FV3LAM_wflow.xml that is executed when running the experiment with
the Rocoto workflow manager.

The setup.sh script reads three other configuration scripts: (1) config_default.sh (Section 4.5.1),
(2) config.sh (Section 4.5.2), and (3) set_predef_grid_params.sh (Section 4.4). Note that these
three scripts are read in order: config_default.sh, config.sh, then set_predef_grid_params.sh.
If a parameter is specified differently in these scripts, the file containing the last defined value will
be used.

4.7.2 Description of Workflow Tasks
The flowchart of the workflow tasks that are specified in the FV3LAM_wflow.xml file are il-
lustrated in Figure 4.3, and each task is described in Table 4.6. The first three pre-
processing tasks; MAKE_GRID, MAKE_OROG, and MAKE_SFC_CLIMO are optional. If the user
stages pre-generated grid, orography, and surface climatology fix files, these three tasks
can be skipped by setting RUN_TASK_MAKE_GRID=”FALSE”, RUN_TASK_MAKE_OROG=”FALSE”, and
RUN_TASK_MAKE_SFC_CLIMO=”FALSE” in the regional_workflow/ush/config.sh file before running
the generate_FV3LAM_wflow.sh script. As shown in the figure, the FV3LAM_wflow.xml file runs the
specific j-job scripts in the prescribed order (regional_workflow/jobs/JREGIONAL_[task name])
when the launch_FV3LAM_wflow.sh is submitted. Each j-job task has its own source script named
exregional_[task name].sh in the regional_workflow/scripts directory. Two database files
FV3LAM_wflow.db and FV3LAM_wflow_lock.db are generated and updated by the Rocoto calls. There
is usually no need for users to modify these files. To relaunch the workflow from scratch, delete
these two *.db files and then call the launch script repeatedly for each task.

4.7. Generating a Regional Workflow Experiment 29

UFS Short-Range Weather App Users Guide, Release v1.0

Fig. 4.2: Experiment generation description

30 Chapter 4. Short-Range Weather Application Overview

UFS Short-Range Weather App Users Guide, Release v1.0

Fig. 4.3: Flowchart of the workflow tasks

4.7. Generating a Regional Workflow Experiment 31

UFS Short-Range Weather App Users Guide, Release v1.0

Table 4.6: Workflow tasks in SRW App
WorkflowTask Task Description
make_grid Pre-processing task to generate regional grid files. Can be run, at most, once per

experiment.
make_orog Pre-processing task to generate orography files. Can be run, at most, once per

experiment.
make_sfc_climoPre-processing task to generate surface climatology files. Can be run, at most,

once per experiment.
get_extrn_ics Cycle-specific task to obtain external data for the initial conditions
get_extrn_lbcs Cycle-specific task to obtain external data for the lateral boundary (LB) condi-

tions
make_ics Generate initial conditions from the external data
make_lbcs Generate lateral boundary conditions from the external data
run_fcst Run the forecast model (UFS weather model)
run_post Run the post-processing tool (UPP)

4.8 Launch of Workflow
There are two ways to launch the workflow using Rocoto: (1) with the launch_FV3LAM_wflow.sh
script, and (2) manually calling the rocotorun command. Moreover, you can run the workflow
separately using stand-alone scripts.

An environment variable may be set to navigate to the $EXPTDIR more easily. If the login shell is
bash, it can be set as follws:

export EXPTDIR=/path-to-experiment/directory

Or if the login shell is csh/tcsh, it can be set using:

setenv EXPTDIR /path-to-experiment/directory

4.8.1 Launch with the launch_FV3LAM_wflow.sh script
To launch the launch_FV3LAM_wflow.sh script, simply call it without any arguments as follows:

cd ${EXPTDIR}
./launch_FV3LAM_wflow.sh

This script creates a log file named log.launch_FV3LAM_wflow in the EXPTDIR directory (described
in Section 3.3) or appends to it if it already exists. You can check the contents of the end of the log
file (e.g. last 30 lines) using the command:

tail -n 30 log.launch_FV3LAM_wflow

This command will print out the status of the workflow tasks as follows:

32 Chapter 4. Short-Range Weather Application Overview

UFS Short-Range Weather App Users Guide, Release v1.0

CYCLE TASK JOBID STATE EXIT STATUS TRIES␣
→˓ DURATION
==
202006170000 make_grid druby://hfe01:33728 SUBMITTING - 0␣
→˓ 0.0
202006170000 make_orog - - - -␣
→˓ -
202006170000 make_sfc_climo - - - -␣
→˓ -
202006170000 get_extrn_ics druby://hfe01:33728 SUBMITTING - 0␣
→˓ 0.0
202006170000 get_extrn_lbcs druby://hfe01:33728 SUBMITTING - 0␣
→˓ 0.0
202006170000 make_ics - - - -␣
→˓ -
202006170000 make_lbcs - - - -␣
→˓ -
202006170000 run_fcst - - - -␣
→˓ -
202006170000 run_post_00 - - - -␣
→˓ -
202006170000 run_post_01 - - - -␣
→˓ -
202006170000 run_post_02 - - - -␣
→˓ -
202006170000 run_post_03 - - - -␣
→˓ -
202006170000 run_post_04 - - - -␣
→˓ -
202006170000 run_post_05 - - - -␣
→˓ -
202006170000 run_post_06 - - - -␣
→˓ -

Summary of workflow status:
~~~~~~~~~~~~~~~~~~~~~~~~~~

0 out of 1 cycles completed.
Workflow status: IN PROGRESS

Error messages for each task can be found in the task log files located in the EXPTDIR/log directory.
In order to launch more tasks in the workflow, you just need to call the launch script again as
follows:

./launch_FV3LAM_wflow

If everything goes smoothly, you will eventually get the following workflow status table as follows:

CYCLE TASK JOBID STATE EXIT STATUS TRIES␣
→˓ DURATION
======================================================================================================
202006170000 make_grid 8854765 SUCCEEDED 0 1␣
→˓ 6.0 (continues on next page)

4.8. Launch of Workflow 33



UFS Short-Range Weather App Users Guide, Release v1.0

(continued from previous page)

202006170000 make_orog 8854809 SUCCEEDED 0 1␣
→˓ 27.0
202006170000 make_sfc_climo 8854849 SUCCEEDED 0 1␣
→˓ 36.0
202006170000 get_extrn_ics 8854763 SUCCEEDED 0 1␣
→˓ 54.0
202006170000 get_extrn_lbcs 8854764 SUCCEEDED 0 1␣
→˓ 61.0
202006170000 make_ics 8854914 SUCCEEDED 0 1␣
→˓ 119.0
202006170000 make_lbcs 8854913 SUCCEEDED 0 1␣
→˓ 98.0
202006170000 run_fcst 8854992 SUCCEEDED 0 1␣
→˓ 655.0
202006170000 run_post_00 8855459 SUCCEEDED 0 1␣
→˓ 6.0
202006170000 run_post_01 8855460 SUCCEEDED 0 1␣
→˓ 6.0
202006170000 run_post_02 8855461 SUCCEEDED 0 1␣
→˓ 6.0
202006170000 run_post_03 8855462 SUCCEEDED 0 1␣
→˓ 6.0
202006170000 run_post_04 8855463 SUCCEEDED 0 1␣
→˓ 6.0
202006170000 run_post_05 8855464 SUCCEEDED 0 1␣
→˓ 6.0
202006170000 run_post_06 8855465 SUCCEEDED 0 1␣
→˓ 6.0

If all the tasks complete successfully, the workflow status in the log file will include the word
“SUCCESS.” Otherwise, the workflow status will include the word “FAILURE.”

4.8.2 Manually launch by calling the rocotorun command
To launch the workflow manually, the rocoto module should be loaded:

module load rocoto

Then, launch the workflow as follows:

cd ${EXPTDIR}
rocotorun -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10

To check the status of the workflow, issue a rocotostat command as follows:

rocotostat -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10

Wait a few seconds and issue a second set of rocotorun and rocotostat commands:

34 Chapter 4. Short-Range Weather Application Overview



UFS Short-Range Weather App Users Guide, Release v1.0

rocotorun -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10
rocotostat -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10

4.8.3 Run the Workflow Using the Stand-alone Scripts
The regional workflow has the capability to be run using standalone shell scripts if the Rocoto
software is not available on a given platform. These scripts are located in the ufs-srweather-app/
regional_workflow/ush/wrappers directory. Each workflow task has a wrapper script to set envi-
ronment variables and run the job script.

Example batch-submit scripts for Hera (Slurm) and Cheyenne (PBS) are included: sq_job.sh and
qsub_job.sh, respectively. These examples set the build and run environment for Hera or Cheyenne
so that run-time libraries match the compiled libraries (i.e. netcdf, mpi). Users may either modify
the submit batch script as each task is submitted, or duplicate this batch wrapper for their system
settings for each task. Alternatively, some batch systems allow users to specify most of the settings
on the command line (with the sbatch or qsub command, for example). This piece will be unique
to your platform. The tasks run by the regional workflow are shown in Table 4.7. Tasks with the
same stage level may be run concurrently (no dependency).

Table 4.7: List of tasks in the regional workflow in the order
that they are executed. Scripts with the same stage number
may be run simultaneously. The number of processors and
wall clock time is a good starting point for Cheyenne or Hera
when running a 48-h forecast on the 25-km CONUS domain.

Stage/step Task Run Script Number of Pro-cessors Wall clock time (H:MM)
1 run_get_ics.sh 1 0:20 (depends on HPSS vs FTP vs staged-

on-disk)
1 run_get_lbcs.sh 1 0:20 (depends on HPSS vs FTP vs staged-

on-disk)
1 run_make_grid.sh 24 0:20
2 run_make_orog.sh 24 0:20
3 run_make_sfc_climo.sh48 0:20
4 run_make_ics.sh 48 0:30
4 run_make_lbcs.sh 48 0:30
5 run_fcst.sh 48 0:30
6 run_post.sh 48 0:25 (2 min per output forecast hour)

The steps to run the standalone scripts are as follows:

1. Clone and build the ufs-srweather-app following the steps here, or in Sections 4.1 to Section
4.6 above.

2. Generate an experiment configuration following the steps here, or in Section 4.7 above.

3. cd into the experiment directory

4. Set the environment variable EXPTDIR for either csh and bash, respectively:

4.8. Launch of Workflow 35

https://github.com/ufs-community/ufs-srweather-app/wiki/Getting-Started
https://github.com/ufs-community/ufs-srweather-app/wiki/Getting-Started


UFS Short-Range Weather App Users Guide, Release v1.0

setenv EXPTDIR `pwd`
export EXPTDIR=`pwd`

5. COPY the wrapper scripts from the regional_workflow directory into your experiment direc-
tory:

cp ufs-srweather-app/regional_workflow/ush/wrappers/* .

6. RUN each of the listed scripts in order. Scripts with the same stage number may be run
simultaneously.

1. On most HPC systems, you will need to submit a batch job to run multi-processor jobs.

2. On some HPC systems, you may be able to run the first two jobs (serial) on a login
node/command-line

3. Example scripts for Slurm (Hera) and PBS (Cheyenne) are provided. These will need to
be adapted to your system.

4. This submit batch script is hard-coded per task, so will need to be modified or copied to
run each task.

Check the batch script output file in your experiment directory for a “SUCCESS” message near the
end of the file.

36 Chapter 4. Short-Range Weather Application Overview



CHAPTER
FIVE

CONFIGURING THEWORKFLOW: CONFIG.SH AND CONFIG_DEFAULTS.SH

To create the experiment directory and workflow when running the SRW App, the user must create
an experiment configuration file named config.sh. This file contains experiment-specific informa-
tion, such as dates, external model data, directories, and other relevant settings. To help the user,
two sample configuration files have been included in the regional_workflow repository’s ush direc-
tory: config.community.sh and config.nco.sh. The first is for running experiments in community
mode (RUN_ENVIR set to “community”; see below), and the second is for running experiments in
“nco” mode (RUN_ENVIR set to “nco”). Note that for this release, only “community” mode is sup-
ported. These files can be used as the starting point from which to generate a variety of experiment
configurations in which to run the SRW App.

There is an extensive list of experiment parameters that a user can set when configuring the experi-
ment. Not all of these need to be explicitly set by the user in config.sh. In the case that a user does
not define an entry in the config.sh script, either its value in config_defaults.sh will be used,
or it will be reset depending on other parameters, e.g. the platform on which the experiment will
be run (specified by MACHINE). Note that config_defaults.sh contains the full list of experiment
parameters that a user may set in config.sh (i.e. the user cannot set parameters in config.sh that
are not initialized in config_defaults.sh).

The following is a list of the parameters in the config_defaults.sh file. For each parameter, the
default value and a brief description is given. In addition, any relevant information on features and
settings supported or unsupported in this release is specified.

5.1 Platform Environment
RUN_ENVIR: (Default: “nco”) This variable determines the mode that the workflow will run in.

The user can choose between two modes: “nco” and “community.” The “nco” mode uses a
directory structure that mimics what is used in operations at NOAA/NCEP Central Operations
(NCO) and by those in the NOAA/NCEP/Environmental Modeling Center (EMC) working
with NCO on pre-implementation testing. Specifics of the conventions used in “nco” mode
can be found in the following WCOSS Implementation Standards document:

NCEP Central Operations
WCOSS Implementation Standards
April 17, 2019

37



UFS Short-Range Weather App Users Guide, Release v1.0

Version 10.2.0

Setting RUN_ENVIR to “community” will use the standard directory structure and variable nam-
ing convention and is recommended in most cases for users who are not planning to imple-
ment their code into operations at NCO.

MACHINE: (Default: “BIG_COMPUTER”) The machine (a.k.a. platform) on which the workflow
will run. Currently supported platforms include “WCOSS_CRAY,” “WCOSS_DELL_P3,”
“HERA,” “ORION,” “JET,” “ODIN,” “CHEYENNE,” “STAMPEDE,” “GAEA,” “MACOS,” and
“LINUX.”

ACCOUNT: (Default: “project_name”) The account under which to submit jobs to the queue on the
specified MACHINE.

WORKFLOW_MANAGER: (Default: “none”) The workflow manager to use (e.g. “ROCOTO”). This is set
to “none” by default, but if the machine name is set to a platform that supports Rocoto, this
will be overwritten and set to “ROCOTO.”

SCHED: (Default: “”) The job scheduler to use (e.g. slurm) on the specified MACHINE. Set this to an
empty string in order for the experiment generation script to set it automatically depending
on the machine the workflow is running on. Currently, supported schedulers include “slurm,”
“pbspro,” “lsf,” “lsfcray,” and “none”.

PARTITION_DEFAULT: (Default: “”) If using the slurm job scheduler (i.e. if SCHED is set to “slurm”),
the default partition to which to submit workflow tasks. If a task does not have a specific
variable that specifies the partition to which it will be submitted (e.g. PARTITION_HPSS,
PARTITION_FCST; see below), it will be submitted to the partition specified by this variable.
If this is not set or is set to an empty string, it will be (re)set to a machine-dependent value.
This is not used if SCHED is not set to “slurm.”

CLUSTERS_DEFAULT: (Default: “”) If using the slurm job scheduler (i.e. if SCHED is set to “slurm”),
the default clusters to which to submit workflow tasks. If a task does not have a spe-
cific variable that specifies the partition to which it will be submitted (e.g. CLUSTERS_HPSS,
CLUSTERS_FCST; see below), it will be submitted to the clusters specified by this variable. If
this is not set or is set to an empty string, it will be (re)set to a machine-dependent value.
This is not used if SCHED is not set to “slurm.”

QUEUE_DEFAULT: (Default: “”) The default queue or QOS (if using the slurm job scheduler, where
QOS is Quality of Service) to which workflow tasks are submitted. If a task does not have
a specific variable that specifies the queue to which it will be submitted (e.g. QUEUE_HPSS,
QUEUE_FCST; see below), it will be submitted to the queue specified by this variable. If this is
not set or is set to an empty string, it will be (re)set to a machine-dependent value.

PARTITION_HPSS: (Default: “”) If using the slurm job scheduler (i.e. if SCHED is set to “slurm”), the
partition to which the tasks that get or create links to external model files [which are needed
to generate initial conditions (ICs) and lateral boundary conditions (LBCs)] are submitted. If
this is not set or is set to an empty string, it will be (re)set to a machine-dependent value.
This is not used if SCHED is not set to “slurm.”

CLUSTERS_HPSS: (Default: “”) If using the slurm job scheduler (i.e. if SCHED is set to “slurm”), the
clusters to which the tasks that get or create links to external model files [which are needed

38 Chapter 5. Configuring the Workflow: config.sh and config_defaults.sh



UFS Short-Range Weather App Users Guide, Release v1.0

to generate initial conditions (ICs) and lateral boundary conditions (LBCs)] are submitted. If
this is not set or is set to an empty string, it will be (re)set to a machine-dependent value.
This is not used if SCHED is not set to “slurm.”

QUEUE_HPSS: (Default: “”) The queue or QOS to which the tasks that get or create links to external
model files are submitted. If this is not set or is set to an empty string, it will be (re)set to a
machine-dependent value.

PARTITION_FCST: (Default: “”) If using the slurm job scheduler (i.e. if SCHED is set to “slurm”), the
partition to which the task that runs forecasts is submitted. If this is not set or set to an empty
string, it will be (re)set to a machine-dependent value. This is not used if SCHED is not set to
“slurm.”

CLUSTERS_FCST: (Default: “”) If using the slurm job scheduler (i.e. if SCHED is set to “slurm”), the
clusters to which the task that runs forecasts is submitted. If this is not set or set to an empty
string, it will be (re)set to a machine-dependent value. This is not used if SCHED is not set to
“slurm.”

QUEUE_FCST: (Default: “”) The queue or QOS to which the task that runs a forecast is submitted.
If this is not set or set to an empty string, it will be (re)set to a machine-dependent value.

5.2 Parameters for Running Without a WorkflowManager
These settings control run commands for platforms without a workflow manager. Values will be
ignored unless WORKFLOW_MANAGER="none".

RUN_CMD_UTILS: (Default: “mpirun -np 1”) The run command for pre-processing utilities (shave,
orog, sfc_climo_gen, etc.). This can be left blank for smaller domains, in which case the
executables will run without MPI.

RUN_CMD_FCST: (Default: “mpirun -np ${PE_MEMBER01}”) The run command for the model
forecast step. This will be appended to the end of the variable definitions file (“var_defns.sh”).

RUN_CMD_POST: (Default: “mpirun -np 1”) The run command for post-processing (UPP). Can be
left blank for smaller domains, in which case UPP will run without MPI.

5.3 Cron-Associated Parameters
USE_CRON_TO_RELAUNCH: (Default: “FALSE”) Flag that determines whether or not a line is added to

the user’s cron table that calls the experiment launch script every CRON_RELAUNCH_INTVL_MNTS
minutes.

CRON_RELAUNCH_INTVL_MNTS: (Default: “03”) The interval (in minutes) between successive calls of
the experiment launch script by a cron job to (re)launch the experiment (so that the workflow
for the experiment kicks off where it left off). This is used only if USE_CRON_TO_RELAUNCH is
set to “TRUE”.

5.2. Parameters for Running Without a WorkflowManager 39



UFS Short-Range Weather App Users Guide, Release v1.0

5.4 Directory Parameters
EXPT_BASEDIR: (Default: “”) The base directory in which the experiment directory will be created.

If this is not specified or if it is set to an empty string, it will default to ${HOMErrfs}/../../
expt_dirs, where ${HOMErrfs} contains the full path to the regional_workflow directory.

EXPT_SUBDIR: (Default: “”) The name that the experiment directory (without the full path) will
have. The full path to the experiment directory, which will be contained in the variable
EXPTDIR, will be:

EXPTDIR="${EXPT_BASEDIR}/${EXPT_SUBDIR}"

This parameter cannot be left as a null string.

5.5 NCOMode Parameters
These variables apply only when using NCO mode (i.e. when RUN_ENVIR is set to “nco”).

COMINgfs: (Default: “/base/path/of/directory/containing/gfs/input/files”) The beginning
portion of the directory which contains files generated by the external model that the initial
and lateral boundary condition generation tasks need in order to create initial and boundary
condition files for a given cycle on the native FV3-LAM grid. For a cycle that starts on the
date specified by the variable YYYYMMDD (consisting of the 4-digit year followed by the
2-digit month followed by the 2-digit day of the month) and hour specified by the variable
HH (consisting of the 2-digit hour-of-day), the directory in which the workflow will look for
the external model files is:

$COMINgfs/gfs.$yyyymmdd/$hh

STMP: (Default: “/base/path/of/directory/containing/model/input/and/raw/output/files”)
The beginning portion of the directory that will contain cycle-dependent model input files,
symlinks to cycle-independent input files, and raw (i.e. before post-processing) forecast
output files for a given cycle. For a cycle that starts on the date specified by YYYYMMDD
and hour specified by HH (where YYYYMMDD and HH are as described above) [so that
the cycle date (cdate) is given by cdate="${YYYYMMDD}${HH}"], the directory in which the
aforementioned files will be located is:

$STMP/tmpnwprd/$RUN/$cdate

NET, envir, RUN: Variables used in forming the path to the directory that will contain the output
files from the post-processor (UPP) for a given cycle (see definition of PTMP below). These are
defined in the WCOSS Implementation Standards document as follows:

NET: (Default: “rrfs”) Model name (first level of com directory structure)

envir: (Default: “para”) Set to “test” during the initial testing phase, “para” when running
in parallel (on a schedule), and “prod” in production.

40 Chapter 5. Configuring the Workflow: config.sh and config_defaults.sh



UFS Short-Range Weather App Users Guide, Release v1.0

RUN: (Default: “experiment_name”) Name of model run (third level of com directory struc-
ture).

PTMP: (Default: “/base/path/of/directory/containing/postprocessed/output/files”) The be-
ginning portion of the directory that will contain the output files from the post-processor
(UPP) for a given cycle. For a cycle that starts on the date specified by YYYYMMDD and hour
specified by HH (where YYYYMMDD and HH are as described above), the directory in which
the UPP output files will be placed will be:

$PTMP/com/$NET/$envir/$RUN.$yyyymmdd/$hh

5.6 Pre-Processing File Separator Parameters
DOT_OR_USCORE: (Default: “_”) This variable sets the separator character(s) to use in the names of

the grid, mosaic, and orography fixed files. Ideally, the same separator should be used in the
names of these fixed files as the surface climatology fixed files.

5.7 File Name Parameters
EXPT_CONFIG_FN: (Default: “config.sh”) Name of the user-specified configuration file for the fore-

cast experiment.

RGNL_GRID_NML_FN: (Default: “regional_grid.nml”) Name of the file containing Fortran namelist
settings for the code that generates an “ESGgrid” type of regional grid.

FV3_NML_BASE_SUITE_FN: (Default: “input.nml.FV3”) Name of the Fortran namelist file contain-
ing the forecast model’s base suite namelist, i.e. the portion of the namelist that is common
to all physics suites.

FV3_NML_YAML_CONFIG_FN: (Default: “FV3.input.yml”) Name of YAML configuration file contain-
ing the forecast model’s namelist settings for various physics suites.

DIAG_TABLE_FN: (Default: “diag_table”) Name of the file that specifies the fields that the forecast
model will output.

FIELD_TABLE_FN: (Default: “field_table”) Name of the file that specifies the tracers that the fore-
cast model will read in from the IC/LBC files.

DATA_TABLE_FN: (Default: “data_table”) The name of the file containing the data table read in by
the forecast model.

MODEL_CONFIG_FN: (Default: “model_configure”) The name of the file containing settings and
configurations for the NUOPC/ESMF component.

NEMS_CONFIG_FN: (Default: “nems.configure”) The name of the file containing information about
the various NEMS components and their run sequence.

FV3_EXEC_FN: (Default: “NEMS.exe”) Name of the forecast model executable in the executables
directory (EXECDIR; set during experiment generation).

5.6. Pre-Processing File Separator Parameters 41



UFS Short-Range Weather App Users Guide, Release v1.0

WFLOW_XML_FN: (Default: “FV3LAM_wflow.xml”) Name of the Rocoto workflow XML file that the
experiment generation script creates and that defines the workflow for the experiment.

GLOBAL_VAR_DEFNS_FN: (Default: “var_defns.sh”) Name of the file (a shell script) containing the
definitions of the primary experiment variables (parameters) defined in this default config-
uration script and in config.sh as well as secondary experiment variables generated by the
experiment generation script. This file is sourced by many scripts (e.g. the J-job scripts cor-
responding to each workflow task) in order to make all the experiment variables available in
those scripts.

EXTRN_MDL_ICS_VAR_DEFNS_FN: (Default: “extrn_mdl_ics_var_defns.sh”) Name of the file (a
shell script) containing the definitions of variables associated with the external model from
which ICs are generated. This file is created by the GET_EXTRN_ICS_TN task because the values
of the variables it contains are not known before this task runs. The file is then sourced by
the MAKE_ICS_TN task.

EXTRN_MDL_LBCS_VAR_DEFNS_FN: (Default: “extrn_mdl_lbcs_var_defns.sh”) Name of the file (a
shell script) containing the definitions of variables associated with the external model from
which LBCs are generated. This file is created by the GET_EXTRN_LBCS_TN task because the val-
ues of the variables it contains are not known before this task runs. The file is then sourced
by the MAKE_ICS_TN task.

WFLOW_LAUNCH_SCRIPT_FN: (Default: “launch_FV3LAM_wflow.sh”) Name of the script that can be
used to (re)launch the experiment’s Rocoto workflow.

WFLOW_LAUNCH_LOG_FN: (Default: “log.launch_FV3LAM_wflow”) Name of the log file
that contains the output from successive calls to the workflow launch script
(WFLOW_LAUNCH_SCRIPT_FN).

5.8 Foreast Parameters
DATE_FIRST_CYCL: (Default: “YYYYMMDD”) Starting date of the first forecast in the set of fore-

casts to run. Format is “YYYYMMDD”. Note that this does not include the hour-of-day.

DATE_LAST_CYCL: (Default: “YYYYMMDD”) Starting date of the last forecast in the set of forecasts
to run. Format is “YYYYMMDD”. Note that this does not include the hour-of-day.

CYCL_HRS: (Default: ( “HH1” “HH2” )) An array containing the hours of the day at which to
launch forecasts. Forecasts are launched at these hours on each day from DATE_FIRST_CYCL to
DATE_LAST_CYCL, inclusive. Each element of this array must be a two-digit string representing
an integer that is less than or equal to 23, e.g. “00”, “03”, “12”, “23”.

FCST_LEN_HRS: (Default: “24”) The length of each forecast, in integer hours.

42 Chapter 5. Configuring the Workflow: config.sh and config_defaults.sh



UFS Short-Range Weather App Users Guide, Release v1.0

5.9 Initial and Lateral Boundary Condition Generation Parameters
EXTRN_MDL_NAME_ICS: (Default: “FV3GFS”) The name of the external model that will provide

fields from which initial condition (IC) files, surface files, and 0-th hour boundary condition
files will be generated for input into the forecast model.

EXTRN_MDL_NAME_LBCS: (Default: “FV3GFS”) The name of the external model that will provide
fields from which lateral boundary condition (LBC) files (except for the 0-th hour LBC file)
will be generated for input into the forecast model.

LBC_SPEC_INTVL_HRS: (Default: “6”) The interval (in integer hours) at which LBC files will be gen-
erated, referred to as the boundary specification interval. Note that the model specified in
EXTRN_MDL_NAME_LBCS must have data available at a frequency greater than or equal to that
implied by LBC_SPEC_INTVL_HRS. For example, if LBC_SPEC_INTVL_HRS is set to 6, then the
model must have data available at least every 6 hours. It is up to the user to ensure that this
is the case.

FV3GFS_FILE_FMT_ICS: (Default: “nemsio”) If using the FV3GFS model as the source of the ICs
(i.e. if EXTRN_MDL_NAME_ICS is set to “FV3GFS”), this variable specifies the format of the
model files to use when generating the ICs.

FV3GFS_FILE_FMT_LBCS: (Default: “nemsio”) If using the FV3GFS model as the source of the LBCs
(i.e. if EXTRN_MDL_NAME_LBCS is set to “FV3GFS”), this variable specifies the format of the
model files to use when generating the LBCs.

5.10 User-Staged External Model Directory and File Parameters
USE_USER_STAGED_EXTRN_FILES: (Default: “False”) Flag that determines whether or not the work-

flow will look for the external model files needed for generating ICs and LBCs in user-specified
directories (as opposed to fetching them from mass storage like NOAA HPSS).

EXTRN_MDL_SOURCE_BASEDIR_ICS: (Default: “/base/dir/containing/user/staged/extrn/mdl/files/for/ICs”)
Directory in which to look for external model files for generating ICs. If
USE_USER_STAGED_EXTRN_FILES is set to “TRUE”, the workflow looks in this directory
(specifically, in a subdirectory under this directory named “YYYYMMDDHH” consisting
of the starting date and cycle hour of the forecast, where YYYY is the 4-digit year, MM
the 2-digit month, DD the 2-digit day of the month, and HH the 2-digit hour of the day)
for the external model files specified by the array EXTRN_MDL_FILES_ICS (these files will
be used to generate the ICs on the native FV3-LAM grid). This variable is not used if
USE_USER_STAGED_EXTRN_FILES is set to “FALSE”.

EXTRN_MDL_FILES_ICS: (Default: “ICS_file1” “ICS_file2” “. . . ”) Array containing the names of
the files to search for in the directory specified by EXTRN_MDL_SOURCE_BASEDIR_ICS. This vari-
able is not used if USE_USER_STAGED_EXTRN_FILES is set to “FALSE”.

EXTRN_MDL_SOURCE_BASEDIR_LBCS: (Default: “/base/dir/containing/user/staged/extrn/mdl/files/for/ICs”)
Analogous to EXTRN_MDL_SOURCE_BASEDIR_ICS but for LBCs instead of ICs.

EXTRN_MDL_FILES_LBCS: (Default: ” “LBCS_file1” “LBCS_file2” “. . . ”) Analogous to
EXTRN_MDL_FILES_ICS but for LBCs instead of ICs.

5.9. Initial and Lateral Boundary Condition Generation Parameters 43



UFS Short-Range Weather App Users Guide, Release v1.0

5.11 CCPP Parameter
CCPP_PHYS_SUITE: (Default: “FV3_GFS_v15p2”) The CCPP (Common Community Physics Pack-

age) physics suite to use for the forecast(s). The choice of physics suite determines the
forecast model’s namelist file, the diagnostics table file, the field table file, and the XML
physics suite definition file that are staged in the experiment directory or the cycle direc-
tories under it. Current supported settings for this parameter are “FV3_GFS_v15p2” and
“FV3_RRFS_v1alpha”.

5.12 Grid Generation Parameters
GRID_GEN_METHOD: (Default: “”) This variable specifies the method to use to generate a regional

grid in the horizontal. The only supported value of this parameter is “ESGgrid”, in which case
the Extended Schmidt Gnomonic grid generation method developed by Jim Purser(1) of EMC
will be used.

(1)Purser, R. J., D. Jovic, G. Ketefian, T. Black, J. Beck, J. Dong, and J. Carley, 2020: The Extended
Schmidt Gnomonic Grid for Regional Applications. Unified Forecast System (UFS) Users’ Workshop.
July 27-29, 2020.

Note:

1. If the experiment is using one of the predefined grids (i.e. if PREDEF_GRID_NAME is set to
the name of one of the valid predefined grids), then GRID_GEN_METHOD will be reset to the
value of GRID_GEN_METHOD for that grid. This will happen regardless of whether or not
GRID_GEN_METHOD is assigned a value in the user-specified experiment configuration file, i.e.
any value it may be assigned in the experiment configuration file will be overwritten.

2. If the experiment is not using one of the predefined grids (i.e. if PREDEF_GRID_NAME is set
to a null string), then GRID_GEN_METHOD must be set in the experiment configuration file.
Otherwise, it will remain set to a null string, and the experiment generation will fail because
the generation scripts check to ensure that it is set to a non-empty string before creating the
experiment directory.

The following parameters must be set if using the “ESGgrid” method of generating a regional grid
(i.e. for GRID_GEN_METHOD set to “ESGgrid”).

ESGgrid_LON_CTR: (Default: “”) The longitude of the center of the grid (in degrees).

ESGgrid_LAT_CTR: (Default: “”) The latitude of the center of the grid (in degrees).

ESGgrid_DELX: (Default: “”) The cell size in the zonal direction of the regional grid (in meters).

ESGgrid_DELY: (Default: “”) The cell size in the meridional direction of the regional grid (in me-
ters).

ESGgrid_NX: (Default: “”) The number of cells in the zonal direction on the regional grid.

ESGgrid_NY: (Default: “”) The number of cells in the meridional direction on the regional grid.

44 Chapter 5. Configuring the Workflow: config.sh and config_defaults.sh



UFS Short-Range Weather App Users Guide, Release v1.0

ESGgrid_WIDE_HALO_WIDTH: (Default: “”) The width (in units of number of grid cells) of the halo
to add around the regional grid before shaving the halo down to the width(s) expected by
the forecast model.

In order to generate grid files containing halos that are 3-cell and 4-cell wide and orography files
with halos that are 0-cell and 3-cell wide (all of which are required as inputs to the forecast model),
the grid and orography tasks first create files with halos around the regional domain of width
ESGgrid_WIDE_HALO_WIDTH cells. These are first stored in files. The files are then read in and
“shaved” down to obtain grid files with 3-cell-wide and 4-cell-wide halos and orography files with
0-cell-wide (i.e. no halo) and 3-cell-wide halos. For this reason, we refer to the original halo that
then gets shaved down as the “wide” halo, i.e. because it is wider than the 0-cell-wide, 3-cell-wide,
and 4-cell-wide halos that we will eventually end up with. Note that the grid and orography files
with the wide halo are only needed as intermediates in generating the files with 0-cell-, 3-cell-, and
4-cell-wide halos; they are not needed by the forecast model.

5.13 Computational Forecast Parameters
DT_ATMOS: (Default: “”) The main forecast model integration time step. As described in the fore-

cast model documentation, “It corresponds to the frequency with which the top level routine
in the dynamics is called as well as the frequency with which the physics is called.”

LAYOUT_X, LAYOUT_Y: (Default: “”) The number of MPI tasks (processes) to use in the two hori-
zontal directions (x and y) of the regional grid when running the forecast model.

BLOCKSIZE: (Default: “”) The amount of data that is passed into the cache at a time.

Here, we set these parameters to null strings. This is so that, for any one of these parameters:

1. If the experiment is using a predefined grid and the user sets the parameter in the user-
specified experiment configuration file (EXPT_CONFIG_FN), that value will be used in the fore-
cast(s). Otherwise, the default value of the parameter for that predefined grid will be used.

2. If the experiment is not using a predefined grid (i.e. it is using a custom grid whose parame-
ters are specified in the experiment configuration file), then the user must specify a value for
the parameter in that configuration file. Otherwise, the parameter will remain set to a null
string, and the experiment generation will fail, because the generation scripts check to ensure
that all the parameters defined in this section are set to non-empty strings before creating the
experiment directory.

5.14 Write-Component (Quilting) Parameters
QUILTING: (Default: “TRUE”) Flag that determines whether or not to use the write-component

for writing forecast output files to disk. If set to “TRUE”, the forecast model will output
files named dynf$HHH.nc and phyf$HHH.nc (where HHH is the 3-hour output forecast hour)
containing dynamics and physics fields, respectively, on the write-component grid (the re-
gridding from the native FV3-LAM grid to the write-component grid is done by the forecast
model). If QUILTING is set to “FALSE”, then the output file names are fv3_history.nc and
fv3_history2d.nc and contain fields on the native grid. Note that if QUILTING is set to

5.13. Computational Forecast Parameters 45



UFS Short-Range Weather App Users Guide, Release v1.0

“FALSE”, then the RUN_POST_TN (meta)task cannot be run because the Unified Post Proces-
sor (UPP) code that this task calls cannot process fields on the native grid. In that case, the
RUN_POST_TN (meta)task will be automatically removed from the Rocoto workflow XML.

PRINT_ESMF: (Default: “FALSE”) Flag for whether or not to output extra (debugging) information
from ESMF routines. Must be “TRUE” or “FALSE”. Note that the write-component uses ESMF
library routines to interpolate from the native forecast model grid to the user-specified output
grid (which is defined in the model configuration file (model_configure) in the forecast run
directory).

WRTCMP_write_groups: (Default: “1”) The number of write groups (i.e. groups of MPI tasks) to
use in the write-component.

WRTCMP_write_tasks_per_group: (Default: “20”) The number of MPI tasks to allocate for each
write group.

5.15 Predefined Grid Parameters
PREDEF_GRID_NAME: (Default: “”) This parameter specifies the name of a predefined regional grid.

Note:

• If PREDEF_GRID_NAME is set to a valid predefined grid name, the grid generation method
GRID_GEN_METHOD, the (native) grid parameters, and the write-component grid parameters
are set to predefined values for the specified grid, overwriting any settings of these parame-
ters in the user-specified experiment configuration file (config.sh). In addition, if the time
step DT_ATMOS and the computational parameters LAYOUT_X, LAYOUT_Y, and BLOCKSIZE are not
specified in that configuration file, they are also set to predefined values for the specified grid.

• If PREDEF_GRID_NAME is set to an empty string, it implies the user is providing the native grid
parameters in the user-specified experiment configuration file (EXPT_CONFIG_FN). In this case,
the grid generation method GRID_GEN_METHOD, the native grid parameters, and the write-
component grid parameters as well as the main time step (DT_ATMOS) and the computational
parameters LAYOUT_X, LAYOUT_Y, and BLOCKSIZE must be set in that configuration file.

Setting PREDEF_GRID_NAME provides a convenient method of specifying a commonly used set of
grid-dependent parameters. The predefined grid parameters are specified in the script

ush/set_predef_grid_params.sh

Currently supported PREDEF_GRID_NAME options are “RRFS_CONUS_25km,”
“RRFS_CONUS_13km,” and “RRFS_CONUS_3km.”

46 Chapter 5. Configuring the Workflow: config.sh and config_defaults.sh



UFS Short-Range Weather App Users Guide, Release v1.0

5.16 Pre-existing Directory Parameter
PREEXISTING_DIR_METHOD: (Default: “delete”) This variable determines the method to deal with

pre-existing directories [e.g ones generated by previous calls to the experiment generation
script using the same experiment name (EXPT_SUBDIR) as the current experiment]. This vari-
able must be set to one of “delete”, “rename”, and “quit”. The resulting behavior for each of
these values is as follows:

• “delete”: The preexisting directory is deleted and a new directory (having the same
name as the original preexisting directory) is created.

• “rename”: The preexisting directory is renamed and a new directory (having the same
name as the original pre-existing directory) is created. The new name of the preexisting
directory consists of its original name and the suffix “_oldNNN”, where NNN is a 3-digit
integer chosen to make the new name unique.

• “quit”: The preexisting directory is left unchanged, but execution of the currently run-
ning script is terminated. In this case, the preexisting directory must be dealt with
manually before rerunning the script.

5.17 Verbose Parameter
VERBOSE: (Default: “TRUE”) This is a flag that determines whether or not the experiment genera-

tion and workflow task scripts print out extra informational messages.

5.18 Pre-Processing Parameters
These parameters set flags (and related directories) that determine whether the grid, orography,
and/or surface climatology file generation tasks should be run. Note that these are all cycle-
independent tasks, i.e. if they are to be run, they do so only once at the beginning of the workflow
before any cycles are run.

RUN_TASK_MAKE_GRID: (Default: “TRUE”) Flag that determines whether the grid file generation
task (MAKE_GRID_TN) is to be run. If this is set to “TRUE”, the grid generation task is run and
new grid files are generated. If it is set to “FALSE”, then the scripts look for pre-generated
grid files in the directory specified by GRID_DIR (see below).

GRID_DIR: (Default: “/path/to/pregenerated/grid/files”) The directory in which to look for pre-
generated grid files if RUN_TASK_MAKE_GRID is set to “FALSE”.

RUN_TASK_MAKE_OROG: (Default: “TRUE”) Same as RUN_TASK_MAKE_GRID but for the orography gen-
eration task (MAKE_OROG_TN).

OROG_DIR: (Default: “/path/to/pregenerated/orog/files”) Same as GRID_DIR but for the orogra-
phy generation task.

RUN_TASK_MAKE_SFC_CLIMO: (Default: “TRUE”) Same as RUN_TASK_MAKE_GRID but for the surface
climatology generation task (MAKE_SFC_CLIMO_TN).

5.16. Pre-existing Directory Parameter 47



UFS Short-Range Weather App Users Guide, Release v1.0

SFC_CLIMO_DIR: (Default: “/path/to/pregenerated/surface/climo/files”) Same as GRID_DIR but
for the surface climatology generation task.

5.19 Surface Climatology Parameter
SFC_CLIMO_FIELDS: (Default: “(“facsf” “maximum_snow_albedo” “slope_type” “snowfree_albedo” “soil_type” “substrate_temperature” “vegetation_greenness” “vegetation_type”)”)

Array containing the names of all the fields for which the MAKE_SFC_CLIMO_TN task generates
files on the native FV3-LAM grid.

5.20 Fixed File Parameters
Set parameters associated with the fixed (i.e. static) files. For the main NOAA HPC platforms, as
well as Cheyenne, Odin, and Stampede, fixed files are prestaged with paths defined in the setup.sh
script.

FIXgsm: (Default: “”) System directory in which the majority of fixed (i.e. time-independent) files
that are needed to run the FV3-LAM model are located.

TOPO_DIR: (Default: “”) The location on disk of the static input files used by the make_orog task
(orog.x and shave.x). Can be the same as FIXgsm.

SFC_CLIMO_INPUT_DIR: (Default: “”) The location on disk of the static surface climatology input
fields, used by sfc_climo_gen. These files are only used if RUN_TASK_MAKE_SFC_CLIMO=TRUE.

FNGLAC, ..., FNMSKH: (Default: see below)

(FNGLAC="global_glacier.2x2.grb"
FNMXIC="global_maxice.2x2.grb"
FNTSFC="RTGSST.1982.2012.monthly.clim.grb"
FNSNOC="global_snoclim.1.875.grb"
FNZORC="igbp"
FNAISC="CFSR.SEAICE.1982.2012.monthly.clim.grb"
FNSMCC="global_soilmgldas.t126.384.190.grb"
FNMSKH="seaice_newland.grb")

Names of (some of the) global data files that are assumed to exist in a system directory
specified (this directory is machine-dependent; the experiment generation scripts will set it
and store it in the variable FIXgsm). These file names also appear directly in the forecast
model’s input namelist file.

FIXgsm_FILES_TO_COPY_TO_FIXam: (Default: see below)

("$FNGLAC" \
"$FNMXIC" \
"$FNTSFC" \
"$FNSNOC" \
"$FNAISC" \
"$FNSMCC" \
"$FNMSKH" \

(continues on next page)

48 Chapter 5. Configuring the Workflow: config.sh and config_defaults.sh



UFS Short-Range Weather App Users Guide, Release v1.0

(continued from previous page)

"global_climaeropac_global.txt" \
"fix_co2_proj/global_co2historicaldata_2010.txt" \
"fix_co2_proj/global_co2historicaldata_2011.txt" \
"fix_co2_proj/global_co2historicaldata_2012.txt" \
"fix_co2_proj/global_co2historicaldata_2013.txt" \
"fix_co2_proj/global_co2historicaldata_2014.txt" \
"fix_co2_proj/global_co2historicaldata_2015.txt" \
"fix_co2_proj/global_co2historicaldata_2016.txt" \
"fix_co2_proj/global_co2historicaldata_2017.txt" \
"fix_co2_proj/global_co2historicaldata_2018.txt" \
"global_co2historicaldata_glob.txt" \
"co2monthlycyc.txt" \
"global_h2o_pltc.f77" \
"global_hyblev.l65.txt" \
"global_zorclim.1x1.grb" \
"global_sfc_emissivity_idx.txt" \
"global_solarconstant_noaa_an.txt" \
"replace_with_FIXgsm_ozone_prodloss_filename")

If not running in NCO mode, this array contains the names of the files to copy from the
FIXgsm system directory to the FIXam directory under the experiment directory. Note that the
last element has a dummy value. This last element will get reset by the workflow generation
scripts to the name of the ozone production/loss file to copy from FIXgsm. The name of
this file depends on the ozone parameterization being used, and that in turn depends on the
CCPP physics suite specified for the experiment. Thus, the CCPP physics suite XML must
first be read in to determine the ozone parameterization and then the name of the ozone
production/loss file. These steps are carried out elsewhere (in one of the workflow generation
scripts/functions).

FV3_NML_VARNAME_TO_FIXam_FILES_MAPPING: (Default: see below)

("FNGLAC | $FNGLAC" \
"FNMXIC | $FNMXIC" \
"FNTSFC | $FNTSFC" \
"FNSNOC | $FNSNOC" \
"FNAISC | $FNAISC" \
"FNSMCC | $FNSMCC" \
"FNMSKH | $FNMSKH" )

This array is used to set some of the namelist variables in the forecast model’s namelist file
that represent the relative or absolute paths of various fixed files (the first column of the array,
where columns are delineated by the pipe symbol “|”) to the full paths to these files in the
FIXam directory derived from the corresponding workflow variables containing file names
(the second column of the array).

FV3_NML_VARNAME_TO_SFC_CLIMO_FIELD_MAPPING: (Default: see below)

("FNALBC | snowfree_albedo" \
"FNALBC2 | facsf" \
"FNTG3C | substrate_temperature" \

(continues on next page)

5.20. Fixed File Parameters 49



UFS Short-Range Weather App Users Guide, Release v1.0

(continued from previous page)

"FNVEGC | vegetation_greenness" \
"FNVETC | vegetation_type" \
"FNSOTC | soil_type" \
"FNVMNC | vegetation_greenness" \
"FNVMXC | vegetation_greenness" \
"FNSLPC | slope_type" \
"FNABSC | maximum_snow_albedo" )

This array is used to set some of the namelist variables in the forecast model’s namelist file
that represent the relative or absolute paths of various fixed files (the first column of the array,
where columns are delineated by the pipe symbol “|”) to the full paths to surface climatology
files (on the native FV3-LAM grid) in the FIXLAM directory derived from the corresponding
surface climatology fields (the second column of the array).

CYCLEDIR_LINKS_TO_FIXam_FILES_MAPPING: (Default: see below)

("aerosol.dat | global_climaeropac_global.txt" \
"co2historicaldata_2010.txt | fix_co2_proj/global_co2historicaldata_2010.txt" \
"co2historicaldata_2011.txt | fix_co2_proj/global_co2historicaldata_2011.txt" \
"co2historicaldata_2012.txt | fix_co2_proj/global_co2historicaldata_2012.txt" \
"co2historicaldata_2013.txt | fix_co2_proj/global_co2historicaldata_2013.txt" \
"co2historicaldata_2014.txt | fix_co2_proj/global_co2historicaldata_2014.txt" \
"co2historicaldata_2015.txt | fix_co2_proj/global_co2historicaldata_2015.txt" \
"co2historicaldata_2016.txt | fix_co2_proj/global_co2historicaldata_2016.txt" \
"co2historicaldata_2017.txt | fix_co2_proj/global_co2historicaldata_2017.txt" \
"co2historicaldata_2018.txt | fix_co2_proj/global_co2historicaldata_2018.txt" \
"co2historicaldata_glob.txt | global_co2historicaldata_glob.txt" \
"co2monthlycyc.txt | co2monthlycyc.txt" \
"global_h2oprdlos.f77 | global_h2o_pltc.f77" \
"global_zorclim.1x1.grb | global_zorclim.1x1.grb" \
"sfc_emissivity_idx.txt | global_sfc_emissivity_idx.txt" \
"solarconstant_noaa_an.txt | global_solarconstant_noaa_an.txt" \
"global_o3prdlos.f77 | " )

This array specifies the mapping to use between the symlinks that need to be created in
each cycle directory (these are the “files” that FV3 looks for) and their targets in the FIXam
directory. The first column of the array specifies the symlink to be created, and the second
column specifies its target file in FIXam (where columns are delineated by the pipe symbol
“|”).

5.21 Workflow Task Parameters
These parameters set the names of the various workflow tasks and usually do not need to be
changed. For each task, additional values set the parameters to pass to the job scheduler (e.g.
slurm) that will submit a job for each task to be run. Parameters include the number of nodes to
use to run the job, the number of MPI processes per node, the maximum walltime to allow for the
job to complete, and the maximum number of times to attempt to run each task.

Task names:

50 Chapter 5. Configuring the Workflow: config.sh and config_defaults.sh



UFS Short-Range Weather App Users Guide, Release v1.0

MAKE_GRID_TN: (Default: “make_grid”)
MAKE_OROG_TN: (Default: “make_orog”)
MAKE_SFC_CLIMO_TN: (Default: “make_sfc_climo”)
GET_EXTRN_ICS_TN: (Default: “get_extrn_ics”)
GET_EXTRN_LBCS_TN: (Default: “get_extrn_lbcs”)
MAKE_ICS_TN: (Default: “make_ics”)
MAKE_LBCS_TN: (Default: “make_lbcs”)
RUN_FCST_TN: (Default: “run_fcst”)
RUN_POST_TN: (Default: “run_post”)

Number of nodes:

NODES_MAKE_GRID: (Default: “1”)
NODES_MAKE_OROG: (Default: “1”)
NODES_MAKE_SFC_CLIMO: (Default: “2”)
NODES_GET_EXTRN_ICS: (Default: “1”)
NODES_GET_EXTRN_LBCS: (Default: “1”)
NODES_MAKE_ICS: (Default: “4”)
NODES_MAKE_LBCS: (Default: “4”)
NODES_RUN_FCST: (Default: “”) # Calculated in the workflow generation scripts.
NODES_RUN_POST: (Default: “2”)

Number of MPI processes per node:

PPN_MAKE_GRID: (Default: “24”)
PPN_MAKE_OROG: (Default: “24”)
PPN_MAKE_SFC_CLIMO: (Default: “24”)
PPN_GET_EXTRN_ICS: (Default: “1”)
PPN_GET_EXTRN_LBCS: (Default: “1”)
PPN_MAKE_ICS: (Default: “12”)
PPN_MAKE_LBCS: (Default: “12”)
PPN_RUN_FCST: (Default: “24”) # Can be changed depending on the number of threads used.
PPN_RUN_POST: (Default: “24”)

Wall times:

TIME_MAKE_GRID: (Default: “00:20:00”)
TIME_MAKE_OROG: (Default: “00:20:00”)

5.21. Workflow Task Parameters 51



UFS Short-Range Weather App Users Guide, Release v1.0

TIME_MAKE_SFC_CLIMO: (Default: “00:20:00”)
TIME_GET_EXTRN_ICS: (Default: “00:45:00”)
TIME_GET_EXTRN_LBCS: (Default: “00:45:00”)
TIME_MAKE_ICS: (Default: “00:30:00”)
TIME_MAKE_LBCS: (Default: “00:30:00”)
TIME_RUN_FCST: (Default: “04:30:00”)
TIME_RUN_POST: (Default: “00:15:00”)

Maximum number of attempts.

MAXTRIES_MAKE_GRID: (Default: “1”)
MAXTRIES_MAKE_OROG: (Default: “1”)
MAXTRIES_MAKE_SFC_CLIMO: (Default: “1”)
MAXTRIES_GET_EXTRN_ICS: (Default: “1”)
MAXTRIES_GET_EXTRN_LBCS: (Default: “1”)
MAXTRIES_MAKE_ICS: (Default: “1”)
MAXTRIES_MAKE_LBCS: (Default: “1”)
MAXTRIES_RUN_FCST: (Default: “1”)
MAXTRIES_RUN_POST: (Default: “1”)

5.22 Customized Post Configuration Parameters
USE_CUSTOM_POST_CONFIG_FILE: (Default: “FALSE”) Flag that determines whether a user-

provided custom configuration file should be used for post-processing the model data. If
this is set to “TRUE”, then the workflow will use the custom post-processing (UPP) configura-
tion file specified in CUSTOM_POST_CONFIG_FP. Otherwise, a default configuration file provided
in the EMC_post repository will be used.

CUSTOM_POST_CONFIG_FP: (Default: “”) The full path to the custom post flat file, including file-
name, to be used for post-processing. This is only used if CUSTOM_POST_CONFIG_FILE is set to
“TRUE”.

5.23 Halo Blend Parameter
HALO_BLEND: (Default: “10”) Number of rows into the computational domain that should be

blended with the LBCs. To shut halo blending off, set this to zero.

52 Chapter 5. Configuring the Workflow: config.sh and config_defaults.sh



UFS Short-Range Weather App Users Guide, Release v1.0

5.24 FVCOM Parameter
USE_FVCOM: (Default: “FALSE”) Flag that specifies whether or not to update surface conditions in

FV3-LAM with fields generated from the Finite Volume Community Ocean Model (FVCOM).
If set to “TRUE”, lake/sea surface temperatures, ice surface temperatures, and ice placement
will be overwritten by data provided by FVCOM. This is done by running the executable
process_FVCOM.exe in the MAKE_ICS_TN task to modify the file sfc_data.nc generated by
chgres_cube. Note that the FVCOM data must already be interpolated to the desired FV3-
LAM grid.

FVCOM_DIR: (Default: “/user/defined/dir/to/fvcom/data”) User defined directory in which the
file fvcom.nc containing FVCOM data on the FV3-LAM native grid is located. The file name
in this directory must be fvcom.nc.

FVCOM_FILE: (Default: “fvcom.nc”) Name of file located in FVCOM_DIR that has FVCOM data in-
terpolated to FV3-LAM grid. This file will be copied later to a new location and the name
changed to fvcom.nc.

5.25 Compiler Parameter
COMPILER: (Default: “intel”) Type of compiler invoked during the build step. Currently, this must

be set manually (i.e. it is not inherited from the build system in the ufs-srweather-app
directory).

5.24. FVCOM Parameter 53



UFS Short-Range Weather App Users Guide, Release v1.0

54 Chapter 5. Configuring the Workflow: config.sh and config_defaults.sh



CHAPTER
SIX

LIMITED AREA MODEL (LAM) GRIDS: PREDEFINED ANDUSER-GENERATED OPTIONS

In order to set up the workflow and experiment generation of the UFS SRW App, the user must
choose between three predefined FV3-LAM grids, or generate a user-defined grid. At this time, full
support will only be provided to those using one of the three predefined grids supported in this
release. However, preliminary information is provided at the end of this chapter that describes how
users can leverage the SRW App workflow scripts to generate their own user-defined grid. This
feature is not fully supported at this time and is ‘use at your own risk’.

6.1 Predefined Grids
The UFS SRW App release includes three predefined LAM grids that users can choose from
prior to generating a workflow/experiment configuration. To select a predefined grid, the
PREDEF_GRID_NAME variable within the config.sh script needs to be set to one of the following
three options:

• RRFS_CONUS_3km

• RRFS_CONUS_13km

• RRFS_CONUS_25km

The predefined grids are named after the prototype 3-km continental United States (CONUS) grid
being tested for the Rapid Refresh Forecast System (RRFS), which will be a convection-allowing,
hourly-cycled, FV3-LAM-based ensemble planned for operational implementation in 2024. To allow
for use of High Resolution Rapid Refresh (HRRR) data to initialize the SRW App, all three supported
grids were created to fit completely within the HRRR domain. Three resolution options were
provided for flexibility related to compute resources and physics options. For example, a user may
wish to use the 13-km or 25-km domain when running with the FV3_GFS_v15p2 suite definition file
(SDF), since that SDF uses cumulus physics that are not configured to run at 3-km. In addition,
users will have much fewer computational constraints when running with the 13-km and 25-km
domains.

The boundary of the RRFS_CONUS_3km domain is shown in Figure 6.1 (in red). Note that while it is
possible to initialize the FV3-LAM with coarser external model data when using the RRFS_CONUS_3km
domain, it is generally advised to use external model data that has a resolution similar to that of the
native FV3-LAM (predefined) grid. In addition, this grid is ideal for running the FV3_RRFS_v1alpha

55

https://rapidrefresh.noaa.gov/hrrr/


UFS Short-Range Weather App Users Guide, Release v1.0

Fig. 6.1: The boundary of the RRFS_CONUS_3km computational grid (red) and corresponding write-
component grid (blue).

56 Chapter 6. Limited Area Model (LAM) Grids: Predefined and User-Generated Options



UFS Short-Range Weather App Users Guide, Release v1.0

suite definition file (SDF), since this SDF was specifically created for convection-allowing scales,
and is the precursor to the operational physics suite that will be used in the RRFS.

As can be seen in Figure 6.1, the boundary of the write-component grid (in blue) sits just inside
the computational domain (in red). This extra grid is required because the post-processing utility
(UPP) is currently unable to process data on the native FV3 gnomonic grid (in red). Therefore,
model data are interpolated to a Lambert conformal grid (the write component grid) in order for
UPP to read in and correctly process the data.

The RRFS_CONUS_13km grid (Fig. 6.2) also covers the full CONUS, but due to its coarser resolution,
and the need to remain within the HRRR domain, areas of the contiguous United States, such as
Northern Washington, Southern Texas, and the Florida Keys, are closer to the boundaries of the
grid than in the RRFS_CONUS_3km grid. This grid is meant to be run with the FV3_GFS_v15p2 SDF.

Fig. 6.2: The boundary of the RRFS_CONUS_13km computational grid (red) and corresponding write-
component grid (blue).

The final predefined CONUS grid (Fig. 6.3) uses a 25-km resolution and is meant mostly for quick
testing to ensure functionality prior to using a higher-resolution domain. However, for users who
would like to use this domain for research, the FV3_GFS_v15p2 SDF is recommended.

6.1. Predefined Grids 57



UFS Short-Range Weather App Users Guide, Release v1.0

Fig. 6.3: The boundary of the RRFS_CONUS_25km computational grid (red) and corresponding write-
component grid (blue).

58 Chapter 6. Limited Area Model (LAM) Grids: Predefined and User-Generated Options



UFS Short-Range Weather App Users Guide, Release v1.0

6.2 Creating User-Generated Grids
While the three predefined grids available in this release are ideal for users just starting out with
the SRW App, more advanced users may wish to create their own grid for testing over a different
region and/or with a different resolution. Creating a user-defined grid requires knowledge of how
the SRW App workflow functions, in particular, understanding the set of scripts that handle the
workflow and experiment generation. It is also important to note that user-defined grids are not a
supported feature of the current release, however information is being provided for the benefit of
the FV3-LAM community.

With those caveats in mind, this section provides instructions for adding a new grid to the FV3-LAM
workflow that will be generated using the “ESGgrid” method (i.e. using the regional_esg_grid code
in the UFS_UTILS repository, where ESG stands for “Extended Schmidt Gnomonic”). We assume
here that the grid to be generated covers a domain that (1) does not contain either of the poles
and (2) does not cross the -180 deg –> +180 deg discontinuity in longitude near the international
date line. Instructions for domains that do not have these restrictions will be provided in a future
release.

The steps to add such a grid to the workflow are as follows:

1. Decide on the name of the grid. For the purposes of this documentation, the grid will be
called “NEW_GRID”.

2. Add NEW_GRID to the array valid_vals_PREDEF_GRID_NAME in the ufs-srweather-app/
regional_workflow/ush/valid_param_vals.sh file.

3. In the file ufs-srweather-app/regional_workflow/ush/set_predef_grid_params.sh, add a
stanza to the case statement case ${PREDEF_GRID_NAME} in for NEW_GRID. An example of
such a stanza is given below along with comments describing the variables that need to be
set.

To run a forecast experiment on NEW_GRID, start with a workflow configuration file for a success-
ful experiment (this file is named config.sh and is located in the directory ufs-srweather-app/
regional_workflow/ush) and change the line for PREDEF_GRID_NAME to the following:

PREDEF_GRID_NAME="NEW_GRID"

Then, generate a new experiment/workflow using generate_FV3LAM_wflow.sh in the usual way.

The following is an example of a stanza for “NEW_GRID” to be added to set_predef_grid_params.
sh:

#
#---------------------------------------------------------------------
#
# Stanza for NEW_GRID. This grid covers [provide a description of the
# domain that NEW_GRID covers, its grid cell size, etc].
#
#---------------------------------------------------------------------
#
"NEW_GRID")

(continues on next page)

6.2. Creating User-Generated Grids 59



UFS Short-Range Weather App Users Guide, Release v1.0

(continued from previous page)

# The method used to generate the grid. This example is specifically
# for the "ESGgrid" method.
GRID_GEN_METHOD= "ESGgrid"

# The longitude and latitude of the center of the grid, in degrees.
ESGgrid_LON_CTR=-97.5
ESGgrid_LAT_CTR=38.5

# The grid cell sizes in the x and y directions, where x and y are the
# native coordinates of any ESG grid. The units of x and y are in
# meters. These should be set to the nominal resolution we want the
# grid to have. The cells will have exactly these sizes in xy-space
# (computational space) but will have varying size in physical space.
# The advantage of the ESGgrid generation method over the GFDLgrid
# method is that an ESGgrid will have a much smaller variation in grid
# size in physical space than a GFDLgrid.
ESGgrid_DELX="25000.0"
ESGgrid_DELY="25000.0"

# The number of cells along the x and y axes.
ESGgrid_NX=200
ESGgrid_NY=112

# The width of the halo (in units of grid cells) that the temporary
# wide-halo grid created during the grid generation task (make_grid)
# will have. This wide-halo grid gets "shaved" down to obtain the
# 4-cell-wide halo and 3-cell-wide halo grids that the forecast model
# (as well as other codes) will actually use. Recall that the halo is
# needed to provide lateral boundary conditions to the forecast model.
# Usually, there is no need to modify this parameter.
ESGgrid_WIDE_HALO_WIDTH=6

# The default physics time step that the forecast model will use. This
# is the (inverse) frequency with which (most of) the physics suite is
# called. The smaller the grid cell size is, the smaller this value
# needs to be in order to avoid numerical instabilities during the
# forecast. The values specified below are used only if DT_ATMOS is
# not explicitly set in the user-specified experiment configuration
# file config.sh. Note that this parameter may be suite dependent.
if [ "${CCPP_PHYS_SUITE}" = "FV3_GFS_v15p2" ]; then
DT_ATMOS=${DT_ATMOS:-"300"}

elif [ "${CCPP_PHYS_SUITE}" = "FV3_RRFS_v1alpha" ]; then
DT_ATMOS=${DT_ATMOS:-"40"}

else
DT_ATMOS=${DT_ATMOS:-"40"}

fi

# Default MPI task layout (decomposition) along the x and y directions and blocksize.
# The values specified below are used only if they are not explicitly set in the user-
→˓specified
# experiment configuration file config.sh.
LAYOUT_X=${LAYOUT_X:-"5"}

(continues on next page)

60 Chapter 6. Limited Area Model (LAM) Grids: Predefined and User-Generated Options



UFS Short-Range Weather App Users Guide, Release v1.0

(continued from previous page)

LAYOUT_Y=${LAYOUT_Y:-"2"}
BLOCKSIZE=${BLOCKSIZE:-"40"}

# The parameters for the write-component (aka "quilting") grid. This
# is the grid to which the output fields from the forecast are
# interpolated. The output fields are not specified on the native grid
# but are instead remapped to this write-component grid because the
# post-processing software (UPP; called during the run_post tasks) is
# not able to process fields on the native grid. The variable
# "QUILTING", which specifies whether or not to use the
# write-component grid, is by default set to "TRUE".
if [ "$QUILTING" = "TRUE" ]; then

# The number of "groups" of MPI tasks that may be running at any given
# time to write out the output. Each write group will be writing to
# one set of output files (a dynf${fhr}.nc and a phyf${fhr}.nc file,
# where $fhr is the forecast hour). Each write group contains
# WRTCMP_write_tasks_per_group tasks. Usually, it is sufficient to
# have just one write group. This may need to be increased if the
# forecast is proceeding so quickly that a single write group cannot
# complete writing to its set of files before there is a need/request
# to start writing the next set of files at the next output time (this
# can happen, for instance, if the forecast model is trying to write
# output at every time step).

WRTCMP_write_groups="1"

# The number of MPI tasks to allocate to each write group.
WRTCMP_write_tasks_per_group="2"

# The coordinate system in which the write-component grid is
# specified. See the array valid_vals_WRTCMP_output_grid (defined in
# the script valid_param_vals.sh) for the values this can take on.
# The following example is specifically for the Lambert conformal
# coordinate system.

WRTCMP_output_grid="lambert_conformal"

# The longitude and latitude of the center of the write-component
# grid.

WRTCMP_cen_lon="${ESGgrid_LON_CTR}"
WRTCMP_cen_lat="${ESGgrid_LAT_CTR}"

# The first and second standard latitudes needed for the Lambert
# conformal coordinate mapping.

WRTCMP_stdlat1="${ESGgrid_LAT_CTR}"
WRTCMP_stdlat2="${ESGgrid_LAT_CTR}"

# The number of grid points in the x and y directions of the
# write-component grid. Note that this xy coordinate system is that of
# the write-component grid (which in this case is Lambert conformal).
# Thus, it is in general different than the xy coordinate system of
# the native ESG grid.

WRTCMP_nx="197"
(continues on next page)

6.2. Creating User-Generated Grids 61



UFS Short-Range Weather App Users Guide, Release v1.0

(continued from previous page)

WRTCMP_ny="107"

# The longitude and latitude of the lower-left corner of the
# write-component grid, in degrees.

WRTCMP_lon_lwr_left="-121.12455072"
WRTCMP_lat_lwr_left="23.89394570"

# The grid cell sizes along the x and y directions of the
# write-component grid. Units depend on the coordinate system used by
# the grid (i.e. the value of WRTCMP_output_grid). For a Lambert
# conformal write-component grid, the units are in meters.

WRTCMP_dx="${ESGgrid_DELX}"
WRTCMP_dy="${ESGgrid_DELY}"

fi
;;

62 Chapter 6. Limited Area Model (LAM) Grids: Predefined and User-Generated Options



CHAPTER
SEVEN

INPUT AND OUTPUT FILES

This chapter provides an overview of the input and output files needed by the components of
the UFS SRW Application (UFS_UTILS, the UFS Weather Model, and UPP). Links to more detailed
documentation for each of the components are provided.

7.1 Input Files
The SRW Application requires numerous input files to run: static datasets (fix files containing
climatological information, terrain and land use data), initial and boundary conditions files, and
model configuration files (such as namelists).

7.1.1 Initial and Boundary Condition Files
The external model files needed for initializing the runs can be obtained in a number of ways,
including: pulled directly from NOMADS; limited data availability), pulled from the NOAA HPSS
during the workflow execution (requires user access), or obtained and staged by the user from a
different source. The data format for these files can be GRIB2 or NEMSIO. More information on
downloading and staging the external model data can be found in Section 7.3. Once staged, the
end-to-end application will run the system and write output files to disk.

7.1.2 Pre-processing (UFS_UTILS)
When a user runs the SRW Application as described in the quickstart guide Section 2, input data
for the pre-processing utilities is linked from a location on disk to your experiment directory by the
workflow generation step. The pre-processing utilities use many different datasets to create grids,
and to generate model input datasets from the external model files. A detailed description of the
input files for the pre-processing utilities can be found here.

63

https://nomads.ncep.noaa.gov/pub/data/nccf/com/
https://noaa-emcufs-utils.readthedocs.io/en/ufs-v2.0.0/


UFS Short-Range Weather App Users Guide, Release v1.0

7.1.3 UFS Weather Model
The input files for the weather model include both static (fixed) files and grid and date specific files
(terrain, initial conditions, boundary conditions, etc). The static fix files must be staged by the user
unless you are running on a pre-configured platform, in which case you can link to the existing copy
on that machine. See Section 7.3.1 for more information. The static, grid, and date specific files are
linked in the experiment directory by the workflow scripts. An extensive description of the input
files for the weather model can be found in the UFS Weather Model User’s Guide. The namelists
and configuration files for the SRW Application are created from templates by the workflow, as
described in Section 7.1.5.

7.1.4 Unified Post Processor (UPP)
Documentation for the UPP input files can be found in the UPP User’s Guide.

7.1.5 Workflow
The SRW Application uses a series of template files, combined with user selected settings, to create
the required namelists and parameter files needed by the Application. These templates can be
reviewed to see what defaults are being used, and where configuration parameters are assigned
from the config.sh file.

List of Template Files
The template files for the SRW Application are located in regional_workflow/ush/templates and
are shown in Table 7.1.

64 Chapter 7. Input and Output Files

https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/
https://upp.readthedocs.io/en/upp-v9.0.0/InputsOutputs.html


UFS Short-Range Weather App Users Guide, Release v1.0

Table 7.1: Template files for a regional workflow.
FileName Description
data_table Cycle-independent file that the forecast model reads in at the start of each forecast.

It is an empty file. No need to change.
diag_table_[CCPP]File specifying the output fields of the forecast model. A different diag_table may be

configured for different CCPP suites.
field_table_[CCPP]Cycle-independent file that the forecast model reads in at the start of each forecast.

It specifies the tracers that the forecast model will advect. A different field_table
may be needed for different CCPP suites.

FV3.input.ymlYAML configuration file containing the forecast model’s namelist settings for various
physics suites. The values specified in this file update the corresponding values in
the input.nml file. This file may be modified for the specific namelist options of your
experiment.

FV3LAM_wflow.xmlRocoto XML file to run the workflow. It is filled in using the fill_template.py
python script that is called in the generate_FV3LAM_wflow.sh.

in-
put.nml.FV3

Namelist file of the weather model.

model_configureSettings and configurations for the NUOPC/ESMF main component.
nems.configureNEMS (NOAA Environmental Modeling System) configuration file, no need to

change because it is an atmosphere-only model in the SRW Application.
re-
gional_grid.nml

Namelist settings for the code that generates an ESG grid.

README.xml_templating.mdInstruction of Rocoto XML templating with Jinja.

Additional information related to the diag_table_[CCPP], field_table_[CCPP], input.nml.FV3,
model_conigure, and nems.configure can be found in the UFS Weather Model User’s Guide, while
information on the regional_grid.nml can be found in the UFS_UTILS User’s Guide.

Migratory Route of the Input Files in the Workflow
Figure 7.1 shows how the case-specific input files in the ufs-srweather-app/regional_workflow/
ush/templates/ directory flow to the experiment directory. The value of CCPP_PHYS_SUITE is speci-
fied in the configuration file config.sh. The template input files corresponding to CCPP_PHYS_SUITE,
such as field_table and nems_configure, are copied to the experiment directory EXPTDIR and
the namelist file of the weather model input.nml is created from the input.nml.FV3 and FV3.
input.yml files by running the script generate_FV3LAM_wflow.sh. While running the task RUN_FCST
in the regional workflow as shown in Figure 4.3, the field_table, nems.configure, and input.
nml files, located in EXPTDIR are linked to the cycle directory CYCLE_DIR/, and diag_table and
model_configure are copied from the templates directory. Finally, these files are updated with the
variables specified in var_defn.sh.

7.1. Input Files 65

https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/InputsOutputs.html#input-files
https://noaa-emcufs-utils.readthedocs.io/en/ufs-v2.0.0/


UFS Short-Range Weather App Users Guide, Release v1.0

Fig. 7.1: Migratory route of input files

66 Chapter 7. Input and Output Files



UFS Short-Range Weather App Users Guide, Release v1.0

7.2 Output Files
The location of the output files written to disk is defined by the experiment directory, EXPTDIR/
YYYYMMDDHH, as set in config.sh.

7.2.1 Initial and boundary condition files
The external model data used by chgres_cube (as part of the pre-processing utilities) are located
in the experiment run directory under EXPTDIR/YYYYMMDDHH/{EXTRN_MDL_NAME_ICS/LBCS}.

7.2.2 Pre-processing (UFS_UTILS)
The files output by the pre-processing utilities reside in the INPUT directory under the experiment
run directory EXPTDIR/YYYYMMDDHH/INPUT and consist of the following:

• C403_grid.tile7.halo3.nc

• gfs_bndy.tile7.000.nc

• gfs_bndy.tile7.006.nc

• gfs_ctrl.nc

• gfs_data.nc -> gfs_data.tile7.halo0.nc

• grid_spec.nc -> ../../grid/C403_mosaic.halo3.nc

• grid.tile7.halo4.nc -> ../../grid/C403_grid.tile7.halo4.nc

• oro_data.nc -> ../../orog/C403_oro_data.tile7.halo0.nc

• sfc_data.nc -> sfc_data.tile7.halo0.nc

These output files are used as inputs for the UFS weather model, and are described in the Users
Guide.

7.2.3 UFS Weather Model
As mentioned previously, the workflow can be run in ‘community’ or ‘nco’ mode, which determines
the location and names of the output files. In addition to this option, output can also be in netCDF
or nemsio format. The output file format is set in the model_configure files using the output_file
variable. At this time, due to limitations in the post-processing component, only netCDF format
output is recommended for the SRW application.

Note: In summary, the fully supported options for this release include running in ‘community’
mode with netCDF format output files.

7.2. Output Files 67

https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/InputsOutputs.html#grid-description-and-initial-condition-files
https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/InputsOutputs.html#grid-description-and-initial-condition-files


UFS Short-Range Weather App Users Guide, Release v1.0

In this case, the netCDF output files are written to the EXPTDIR/YYYYMMDDHH directory. The bases of
the file names are specified in the input file model_configure and are set to the following in the
SRW Application:

• dynfHHH.nc

• phyfHHH.nc

Additional details may be found in the UFS Weather Model Users Guide.

7.2.4 Unified Post Processor (UPP)
Documentation for the UPP output files can be found here.

For the SRW Application, the weather model netCDF output files are written to the EXPTDIR/
YYYYMMDDHH/postprd directory and have the naming convention (file->linked to):

• BGRD3D_{YY}{JJJ}{hh}{mm}f{fhr}00 -> {domain}.t{cyc}z.bgrd3df{fhr}.tmXX.grib2

• BGDAWP_{YY}{JJJ}{hh}{mm}f{fhr}00 -> {domain}.t{cyc}z.bgdawpf{fhr}.tmXX.grib2

The default setting for the output file names uses rrfs for {domain}. This may be overridden by
the user in the config.sh settings.

If you wish to modify the fields or levels that are output from the UPP, you will need to make
modifications to file fv3lam.xml, which resides in the UPP repository distributed with the UFS SRW
Application. Specifically, if the code was cloned in the directory ufs-srweather-app, the file will be
located in ufs-srweather-app/src/EMC_post/parm.

Note: This process requires advanced knowledge of which fields can be output for the UFS Weather
Model.

Use the directions in the UPP User’s Guide for details on how to make modifications to
the fv3lam.xml file and for remaking the flat text file that the UPP reads, which is called
postxconfig-NT-fv3lam.txt (default).

Once you have created the new flat text file reflecting your changes, you will need to modify your
config.sh to point the workflow to the new text file. In your config.sh, set the following:

USE_CUSTOM_POST_CONFIG_FILE=”TRUE”
CUSTOM_POST_CONFIG_PATH=”/path/to/custom/postxconfig-NT-fv3lam.txt”

which tells the workflow to use the custom file located in the user-defined path. The path should
include the filename. If this is set to true and the file path is not found, then an error will occur
when trying to generate the SRW Application workflow.

You may then start your case workflow as usual and the UPP will use the new flat *.txt file.

68 Chapter 7. Input and Output Files

https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/InputsOutputs.html#output-files
https://upp.readthedocs.io/en/upp-v9.0.0/InputsOutputs.html
https://upp.readthedocs.io/en/upp-v9.0.0/InputsOutputs.html#control-file


UFS Short-Range Weather App Users Guide, Release v1.0

7.3 Downloading and Staging Input Data
A set of input files, including static (fix) data and raw initial and lateral boundary conditions
(IC/LBCs), are needed to run the SRW Application.

7.3.1 Static Files
A set of fix files are necessary to run the SRW Application. Environment variables describe the
location of the static files: FIXgsm, TOPO_DIR, and SFC_CLIMO_INPUT_DIR are the directories where
the static files are located. If you are on a pre-configured or configurable platform, there is no
need to stage the fixed files manually because they have been prestaged and the paths are set in
regional_workflow/ush/setup.sh. If the user’s platform is not defined in that file, the static files
can be pulled individually or as a full tar file from the FTP data repository or from Amazon Web
Services (AWS) cloud storage and staged on your machine. The paths to the staged files must then
be set in config.sh as follows:

• FIXgsm=/path-to/fix/fix_am

• TOPO_DIR=/path-to/fix/fix_am/fix_orog

• SFC_CLIMO_INPUT_DIR=/path-to/fix_am/fix/sfc_climo/

7.3.2 Initial Condition Formats and Source
The SRW Application currently supports raw initial and lateral boundary conditions from numerous
models (i.e., FV3GFS, NAM, RAP, HRRR). The data can be provided in three formats: NEMSIO,
netCDF, or GRIB2. The SRW Application currently only supports the use of NEMSIO and NetCDF
input files from the GFS.

Environment variables describe what IC/LBC files to use (pre-staged files or files to
be automatically pulled from the NOAA HPSS) and the location of the and IC/LBC
files: USE_USER_STAGED_EXTRN_FILES is the T/F flag defining what raw data files to use,
EXTRN_MDL_SOURCE_BASEDIR_ICS is the directory where the initial conditions are located, and
EXTRN_MDL_SOURCE_BASEDIR_LBCS is the directory where the lateral boundary conditions are lo-
cated.

If you have access to the NOAA HPSS and want to automatically download the IC/LBC files using
the workflow, these environment variables can be left out of the config.sh file. However, if you
do not have access to the NOAA HPSS and you need to pull and stage the data manually, you will
need to set USE_USER_STAGED_EXTRN_FILES to TRUE and then set the paths to the where the IC/LBC
files are located.

A small sample of IC/LBCs is available at the FTP data repository or from AWS cloud storage.

7.3. Downloading and Staging Input Data 69

https://ftp.emc.ncep.noaa.gov/EIB/UFS/SRW/v1p0/fix/
https://ufs-data.s3.amazonaws.com/public_release/ufs-srweather-app-v1.0.0/fix/fix_files.tar.gz
https://ufs-data.s3.amazonaws.com/public_release/ufs-srweather-app-v1.0.0/fix/fix_files.tar.gz
https://ftp.emc.ncep.noaa.gov/EIB/UFS/SRW/v1p0/simple_test_case/gst_model_data.tar.gz
https://ufs-data.s3.amazonaws.com/public_release/ufs-srweather-app-v1.0.0/ic/gst_model_data.tar.gz


UFS Short-Range Weather App Users Guide, Release v1.0

7.3.3 Initial and Lateral Boundary Condition Organization
The suggested directory structure and naming convention for the raw input files is described below.
While there is flexibility to modify these settings, this will provide the most reusability for multiple
dates when using the SRW Application workflow.

For ease of reusing the config.sh for multiple dates and cycles, it is recommended to set up your
raw IC/LBC files such that it includes the model name (e.g., FV3GFS, NAM, RAP, HRRR) and
YYYYMMDDHH, for example: /path-to/model_data/FV3GFS/2019061518. Since both initial and lateral
boundary condition files are necessary, you can also include an ICS and LBCS directory. The sample
IC/LBCs available at the FTP data repository are structured as follows:

• /path-to/model_data/MODEL/YYYYMMDDHH/ICS

• /path-to/model_data/MODEL/YYYYMMDDHH/LBCS

When files are pulled from the NOAA HPSS, the naming convention looks something like:

• FV3GFS (grib2): gfs.t{cycle}z.pgrb2.0p25.f{fhr}

• FV3GFS (nemsio): ICs: gfs.t{cycle}z.atmanl.nemsio and gfs.t{cycle}z.sfcanl.nemsio;
LBCs: gfs.t{cycle}z.atmf{fhr}.nemsio

• RAP (grib2): rap.t{cycle}z.wrfprsf{fhr}.grib2

• HRRR (grib2): hrrr.t{cycle}z.wrfprsf{fhr}.grib2

In order to preserve the original file name, the f00 files are placed in the ICS directory and all
other forecast files are placed in the LBCS directory. Then, a symbolic link of the original files in the
ICS/LBCS directory to the YYYYMMDDHH directory is suggested with the cycle removed. For example:

ln -sf /path-to/model_data/RAP/2020041212/ICS/rap.t12z.wrfprsf00.grib2 /path-to/model_data/
→˓RAP/2020041212/rap.wrfprsf00.grib2

Doing this allows for the following to be set in the config.sh regardless of what cycle you are
running:

USE_USER_STAGED_EXTRN_FILES="TRUE"
EXTRN_MDL_SOURCE_BASEDIR_ICS="/path-to/model_data/HRRR"
EXTRN_MDL_FILES_ICS=( "hrrr.wrfprsf00.grib2" )
EXTRN_MDL_SOURCE_BASEDIR_LBCS="/path-to/model_data/RAP"
EXTRN_MDL_FILES_LBCS=( "rap.wrfprsf03.grib2" "rap.wrfprsf06.grib2" )

If you choose to forgo the extra ICS and LBCS directory, you may also simply either rename the
original files to remove the cycle or modify the config.sh to set:

EXTRN_MDL_FILES_ICS=( "hrrr.t{cycle}z.wrfprsf00.grib2" )
EXTRN_MDL_FILES_LBCS=( "rap.t{cycle}z.wrfprsf03.grib2" "rap.t{cycle}z.wrfprsf06.grib2" )

70 Chapter 7. Input and Output Files



UFS Short-Range Weather App Users Guide, Release v1.0

7.3.4 Default Initial and Lateral Boundary Conditions
The default initial and lateral boundary condition files are set to be a severe weather case from
20190615 at 00 UTC. FV3GFS grib2 files are the default model and file format. A tar file
(gst_model_data.tar.gz) containing the model data for this case is available on EMC’s FTP
data repository at https://ftp.emc.ncep.noaa.gov/EIB/UFS/SRW/v1p0/simple_test_case/. It is also
available on Amazon Web Services (AWS) at https://ufs-data.s3.amazonaws.com/public_release/
ufs-srweather-app-v1.0.0/ic/gst_model_data.tar.gz.

7.3.5 Running the App for Different Dates
If users want to run the SRW Application for dates other than 06-15-2019, you will need to
make a change in the case to specify the desired data. This is done by modifying the config.
sh DATE_FIRST_CYCL, DATE_LAST_CYCL, and CYCL_HRS settings. The forecast length can be modified
by changed the FCST_LEN_HRS. In addition, the lateral boundary interval can be specified using the
LBC_SPEC_INTVL_HRS variable.

Users will need to ensure that the initial and lateral boundary condition files are available in the
specified path for their new date, cycle, and forecast length.

7.3.6 Staging Initial Conditions Manually
If users want to run the SRW Application with raw model files for dates other than what are
currently available on the preconfigured platforms, they need to stage the data manually. The data
should be placed in EXTRN_MDL_SOURCE_BASEDIR_ICS and EXTRN_MDL_SOURCE_BASEDIR_LBCS. Raw
model files may be available from a number of sources. A few examples are provided here for
convenience.

NOMADS: https://nomads.ncep.noaa.gov/pub/data/nccf/com/{model}/prod, where model may
be:

• GFS (grib2 or nemsio) - available for the last 10 days https://nomads.ncep.noaa.gov/pub/
data/nccf/com/gfs/prod/

• NAM - available for the last 8 days https://nomads.ncep.noaa.gov/pub/data/nccf/com/nam/
prod/

• RAP - available for the last 2 days https://nomads.ncep.noaa.gov/pub/data/nccf/com/rap/
prod/

• HRRR - available for the last 2 days https://nomads.ncep.noaa.gov/pub/data/nccf/com/
hrrr/prod/

NCDC archive:

• GFS: https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/
global-forcast-system-gfs

• NAM: https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/
north-american-mesoscale-forecast-system-nam

7.3. Downloading and Staging Input Data 71

https://ftp.emc.ncep.noaa.gov/EIB/UFS/SRW/v1p0/simple_test_case/
https://ufs-data.s3.amazonaws.com/public_release/ufs-srweather-app-v1.0.0/ic/gst_model_data.tar.gz
https://ufs-data.s3.amazonaws.com/public_release/ufs-srweather-app-v1.0.0/ic/gst_model_data.tar.gz
https://nomads.ncep.noaa.gov/pub/data/nccf/com
https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/
https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/
https://nomads.ncep.noaa.gov/pub/data/nccf/com/nam/prod/
https://nomads.ncep.noaa.gov/pub/data/nccf/com/nam/prod/
https://nomads.ncep.noaa.gov/pub/data/nccf/com/rap/prod/
https://nomads.ncep.noaa.gov/pub/data/nccf/com/rap/prod/
https://nomads.ncep.noaa.gov/pub/data/nccf/com/hrrr/prod/
https://nomads.ncep.noaa.gov/pub/data/nccf/com/hrrr/prod/
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-mesoscale-forecast-system-nam
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-mesoscale-forecast-system-nam


UFS Short-Range Weather App Users Guide, Release v1.0

• RAP: https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/
rapid-refresh-rap

AWS S3:

• GFS: https://registry.opendata.aws/noaa-gfs-bdp-pds/

• HRRR: https://registry.opendata.aws/noaa-hrrr-pds/ (necessary fields for initializing avail-
able for dates 2015 and newer)

Google Cloud:

• HRRR: https://console.cloud.google.com/marketplace/product/noaa-public/hrrr

Others:

• Univ. of Utah HRRR archive: http://home.chpc.utah.edu/~u0553130/Brian_Blaylock/
cgi-bin/hrrr_download.cgi

• NAM nest archive: https://www.ready.noaa.gov/archives.php

• NAM data older than 6 months can be requested through the Archive Informa-
tion Request System: https://www.ncei.noaa.gov/has/HAS.FileAppRouter?datasetname=
NAM218&subqueryby=STATION&applname=&outdest=FILE

• RAP isobaric data older than 6 months can be requested through the Archive Information Re-
quest System: https://www.ncei.noaa.gov/has/HAS.FileAppRouter?datasetname=RAP130&
subqueryby=STATION&applname=&outdest=FILE

7.3.7 Coexistence of Multiple Files for the Same Date
If you would like to have multiple file formats (e.g., GRIB2, NEMSIO, netCDF) for the same date
it is recommended to have a separate directory for each file format. For example, if you have GFS
GRIB2 and NEMSIO files your directory structure might look like:

/path-to/model_data/FV3GFS/YYYYMMDDHH/ICS and LBCS
/path-to/model_data/FV3GFS_nemsio/YYYYMMDDHH/ICS and LBCS

If you want to use GRIB2 format files for FV3GFS you must also set two additional environment
variables, including:

FV3GFS_FILE_FMT_ICS="grib2"
FV3GFS_FILE_FMT_LBCS="grib2"

This is ONLY necessary if you are using FV3GFS GRIB2 files. These settings may be removed if you
are initializing from NEMSIO format FV3GFS files.

72 Chapter 7. Input and Output Files

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/rapid-refresh-rap
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/rapid-refresh-rap
https://registry.opendata.aws/noaa-gfs-bdp-pds/
https://registry.opendata.aws/noaa-hrrr-pds/
https://console.cloud.google.com/marketplace/product/noaa-public/hrrr
http://home.chpc.utah.edu/~u0553130/Brian_Blaylock/cgi-bin/hrrr_download.cgi
http://home.chpc.utah.edu/~u0553130/Brian_Blaylock/cgi-bin/hrrr_download.cgi
https://www.ready.noaa.gov/archives.php
https://www.ncei.noaa.gov/has/HAS.FileAppRouter?datasetname=NAM218&subqueryby=STATION&applname=&outdest=FILE
https://www.ncei.noaa.gov/has/HAS.FileAppRouter?datasetname=NAM218&subqueryby=STATION&applname=&outdest=FILE
https://www.ncei.noaa.gov/has/HAS.FileAppRouter?datasetname=RAP130&subqueryby=STATION&applname=&outdest=FILE
https://www.ncei.noaa.gov/has/HAS.FileAppRouter?datasetname=RAP130&subqueryby=STATION&applname=&outdest=FILE


UFS Short-Range Weather App Users Guide, Release v1.0

7.3.8 Best Practices for Conserving Disk Space and Keeping Files Safe
Initial and lateral boundary condition files are large and can occupy a significant amount of disk
space. If various users will employ a common file system to conduct runs, it is recommended that
the users share the same EXTRN_MDL_SOURCE_BASEDIR_ICS and EXTRN_MDL_SOURCE_BASEDIR_LBCS di-
rectories. That way, if raw model input files are already on disk for a given date they do not need
to be replicated.

The files in the subdirectories of the EXTRN_MDL_SOURCE_BASEDIR_ICS and
EXTRN_MDL_SOURCE_BASEDIR_LBCS directories should be write-protected. This prevents these
files from being accidentally modified or deleted. The directories should generally be group
writable so the directory can be shared among multiple users.

7.3. Downloading and Staging Input Data 73



UFS Short-Range Weather App Users Guide, Release v1.0

74 Chapter 7. Input and Output Files



CHAPTER
EIGHT

CONFIGURING A NEW PLATFORM

The UFS SRW Application has been designed to work primarily on a number of Level 1 and 2
support platforms, as specified here. However, it is also designed with flexibility in mind, so that any
sufficiently up-to-date machine with a UNIX-based operating system should be capable of running
the application. A full list of prerequisites for installing the UFS SRW App and running the Graduate
Student Test can be found in Section 8.7.

The first step to installing on a new machine is to install NCEPLIBS (https://github.com/
NOAA-EMC/NCEPLIBS), the NCEP libraries package, which is a set of libraries created and main-
tained by NCEP and EMC that are used in many parts of the UFS. NCEPLIBS comes with a large
number of prerequisites (see Section 8.7 for more info), but the only required software prior to
starting the installation process are as follows:

• Fortran compiler with support for Fortran 2003

– gfortran v9+ or ifort v18+ are the only ones tested, but others may work.

• C and C++ compilers compatible with the Fortran compiler

– gcc v9+, ifort v18+, and clang v9+ (macOS, native Apple clang or LLVM clang) have
been tested

• Python v3.6+

– Prerequisite packages must be downloaded: jinja2, yaml and f90nml, as well as a num-
ber of additional Python modules (see Section 8.7) if the user would like to use the
provided graphics scripts

• Perl 5

• git v1.8+

• CMake v3.12+

– CMake v3.15+ is needed for building NCEPLIBS, but versions as old as 3.12 can be used
to build NCEPLIBS-external, which contains a newer CMake that can be used for the rest
of the build.

For both Linux and macOS, you will need to set the stack size to “unlimited” (if allowed) or the
largest possible value.

75

https://github.com/ufs-community/ufs-srweather-app/wiki/Supported-Platforms-and-Compilers
https://github.com/NOAA-EMC/NCEPLIBS
https://github.com/NOAA-EMC/NCEPLIBS


UFS Short-Range Weather App Users Guide, Release v1.0

# Linux, if allowed
ulimit -s unlimited

# macOS, this corresponds to 65MB
ulimit -S -s unlimited

For Linux systems, as long as the above software is available, you can move on to the next step:
installing the NCEPLIBS-external package.

For macOS systems, some extra software is needed: wget, coreutils, pkg-config, and gnu-sed. It
is recommended that you install this software using the Homebrew package manager for macOS
(https://brew.sh/):

• brew install wget

• brew install cmake

• brew install coreutils

• brew install pkg-config

• brew install gnu-sed

However, it is also possible to install these utilities via Macports (https://www.macports.org/), or
installing each utility individually (not recommended).

8.1 Installing NCEPLIBS-external
In order to facilitate the installation of NCEPLIBS (and therefore, the SRW and other UFS ap-
plications) on new platforms, EMC maintains a one-stop package containing most of the pre-
requisite libraries and software necessary for installing NCEPLIBS. This package is known as
NCEPLIBS-external, and is maintained in a git repository at https://github.com/NOAA-EMC/
NCEPLIBS-external. Instructions for installing these will depend on your platform, but gener-
ally so long as all the above-mentioned prerequisites have been installed you can follow the pro-
ceeding instructions verbatim (in bash; a csh-based shell will require different commands). Some
examples for installing on specific platforms can be found in the NCEPLIBS-external/doc directory
<https://github.com/NOAA-EMC/NCEPLIBS-external/tree/release/public-v2/doc>.

These instructions will install the NCEPLIBS-external in the current directory tree, so be sure you
are in the desired location before starting.

export WORKDIR=`pwd`
export INSTALL_PREFIX=${WORKDIR}/NCEPLIBS-ufs-v2.0.0/
export CC=gcc
export FC=gfortran
export CXX=g++

The CC, CXX, and FC variables should specify the C, C++, and Fortran compilers you will be using,
respectively. They can be the full path to the compiler if necessary (for example, on a machine
with multiple versions of the same compiler). It will be important that all libraries and utilities are

76 Chapter 8. Configuring a New Platform

https://brew.sh/
https://www.macports.org/
https://github.com/NOAA-EMC/NCEPLIBS-external
https://github.com/NOAA-EMC/NCEPLIBS-external


UFS Short-Range Weather App Users Guide, Release v1.0

built with the same set of compilers, so it is best to set these variables once at the beginning of the
process and not modify them again.

mkdir -p ${INSTALL_PREFIX}/src && cd ${INSTALL_PREFIX}/src
git clone -b release/public-v2 --recursive https://github.com/NOAA-EMC/NCEPLIBS-external
cd NCEPLIBS-external
mkdir build && cd build
cmake -DCMAKE_INSTALL_PREFIX=${INSTALL_PREFIX} .. 2>&1 | tee log.cmake
make -j4 2>&1 | tee log.make

The previous commands go through the process of cloning the git repository for NCEPLIBS-external,
creating and entering a build directory, and invoking cmake and make to build the code/libraries.
The make step will take a while; as many as a few hours depending on your machine and various
settings. It is highly recommended you use at least 4 parallel make processes to prevent overly long
installation times. The -j4 option in the make command specifies 4 parallel make processes, -j8
would specify 8 parallel processes, while omitting the flag all together will run make serially (not
recommended).

If you would rather use a different version of one or more of the software packages included in
NCEPLIBS-external, you can skip building individual parts of the package by including the proper
flags in your call to cmake. For example:

cmake -DBUILD_MPI=OFF -DCMAKE_INSTALL_PREFIX=${INSTALL_PREFIX} .. 2>&1 | tee log.cmake

will skip the building of MPICH that comes with NCEPLIBS-external. See the readme file
NCEPLIBS-external/README.md for more information on these flags, or for general troubleshoot-
ing.

Once NCEPLIBS-external is installed, you can move on to installing NCEPLIBS.

8.2 Installing NCEPLIBS
Prior to building the UFS SRW Application on a new machine, you will need to install NCEPLIBS.
Installation instructions will again depend on your platform, but so long as NCEPLIBS-external has
been installed successfully you should be able to build NCEPLIBS. The following instructions will
install the NCEPLIBS in the same directory tree as was used for NCEPLIBS-external above, so if you
did not install NCEPLIBS-external in the same way, you will need to modify these commands.

cd ${INSTALL_PREFIX}/src
git clone -b release/public-v2 --recursive https://github.com/NOAA-EMC/NCEPLIBS
cd NCEPLIBS
mkdir build && cd build
export ESMFMKFILE=${INSTALL_PREFIX}/lib/esmf.mk
cmake -DCMAKE_INSTALL_PREFIX=${INSTALL_PREFIX} -DCMAKE_PREFIX_PATH=${INSTALL_PREFIX} -
→˓DOPENMP=ON .. 2>&1 | tee log.cmake
make -j4 2>&1 | tee log.make
make deploy 2>&1 | tee log.deploy

As with NCEPLIBS-external, the above commands go through the process of cloning the git reposi-
tory for NCEPLIBS, creating and entering a build directory, and invoking cmake and make to build

8.2. Installing NCEPLIBS 77



UFS Short-Range Weather App Users Guide, Release v1.0

the code. The make deploy step created a number of modulefiles and scripts that will be used for
setting up the build environment for the UFS SRW App. The ESMFMKFILE variable allows NCEPLIBS
to find the location where ESMF has been built; if you receive a ESMF not found, abort error, you
may need to specify a slightly different location:

export ESMFMKFILE=${INSTALL_PREFIX}/lib64/esmf.mk

Then delete and re-create the build directory and continue the build process as described above.

If you skipped the building of any of the software provided by NCEPLIBS-external, you may need
to add the appropriate locations to your CMAKE_PREFIX_PATH variable. Multiple directories may be
added, separated by semicolons (;) like in the following example:

cmake -DCMAKE_INSTALL_PREFIX=${INSTALL_PREFIX} -DCMAKE_PREFIX_PATH=”${INSTALL_PREFIX};/
→˓location/of/other/software” -DOPENMP=ON .. 2>&1 | tee log.cmake

Further information on including prerequisite libraries, as well as other helpful tips, can be found
in the NCEPLIBS/README.md file.

Once the NCEPLIBS package has been successfully installed, you can move on to building the UFS
SRW Application.

8.3 Building the UFS Short-Range Weather Application (UFS SRW App)
Building the UFS SRW App is similar to building NCEPLIBS, in that the code is stored in a git
repository and is built using CMake software. The first step is to retrieve the code from Github,
using the variables defined earlier:

cd ${WORKDIR}
git clone -b release/public-v1 https://github.com/ufs-community/ufs-srweather-app.git
cd ufs-srweather-app/
./manage_externals/checkout_externals

Here the procedure differs a bit from NCEPLIBS and NCEPLIBS-external. The UFS SRW App is
maintained using an umbrella git repository that collects the individual components of the applica-
tion from their individual, independent git repositories. This is handled using “Manage Externals”
software, which is included in the application; this is the final step listed above, which should out-
put a bunch of dialogue indicating that it is retrieving different code repositories as described in
Table 3.1. It may take several minutes to download these repositories.

Once the Manage Externals step has completed, you will need to make sure your environment is
set up so that the UFS SRW App can find all of the prerequisite software and libraries. There are
a few ways to do this, the simplest of which is to load a modulefile if your machine supports Lua
Modules:

module use ${INSTALL_PREFIX}/modules
module load NCEPLIBS/2.0.0

If your machine does not support Lua but rather TCL modules, see instructions in the NCEPLIBS/
README.md file for converting to TCL modulefiles.

78 Chapter 8. Configuring a New Platform



UFS Short-Range Weather App Users Guide, Release v1.0

If your machine does not support modulefiles, you can instead source the provided bash script for
setting up the environment:

source ${INSTALL_PREFIX}/bin/setenv_nceplibs.sh

This script, just like the modulefiles, will set a number of environment variables that will allow
CMake to easily find all the libraries that were just built. There is also a csh version of the script
in the same directory if your shell is csh-based. If you are using your machine’s pre-built version of
any of the NCEP libraries (not recommended), reference that file to see which variables should be
set to point CMake in the right direction.

At this point there are just a few more variables that need to be set prior to building:

export CMAKE_C_COMPILER=mpicc
export CMAKE_CXX_COMPILER=mpicxx
export CMAKE_Fortran_COMPILER=mpifort

If you are using your machine’s built-in MPI compilers, it is recommended you set the
CMAKE_*_COMPILER flags to full paths to ensure that the correct MPI aliases are used. Finally, one
last environment variable, CMAKE_Platform, must be set. This will depend on your machine; for
example, on a macOS operating system with GNU compilers:

export CMAKE_Platform=macosx.gnu

This is the variable used by the weather model to set a few additional flags based on your machine.
The available options can be found here.

Now all the prerequisites have been installed and variables set, so you should be ready to build the
model!

mkdir build && cd build
cmake .. -DCMAKE_INSTALL_PREFIX=.. | tee log.cmake
make -j4 | tee log.make

On many platforms this build step will take less than 30 minutes, but for some machines it may
take up to a few hours, depending on the system architecture, compiler and compiler flags, and
number of parallel make processes used.

8.4 Setting Up Your Python Environment
The regional_workflow repository contains scripts for generating and running experiments, and
these require some specific python packages to function correctly. First, as mentioned before,
your platform will need Python 3.6 or newer installed. Once this is done, you will need to install
several python packages that are used by the workflow: jinja2 (https://jinja2docs.readthedocs.
io/), pyyaml (https://pyyaml.org/wiki/PyYAML), and f90nml (https://pypi.org/project/f90nml/).
These packages can be installed individually, but it is recommended you use a package manager
(https://www.datacamp.com/community/tutorials/pip-python-package-manager).

If you have conda on your machine:

8.4. Setting Up Your Python Environment 79

https://github.com/ufs-community/ufs-weather-model/tree/release/public-v2/modulefiles
https://jinja2docs.readthedocs.io/
https://jinja2docs.readthedocs.io/
https://pyyaml.org/wiki/PyYAML
https://pypi.org/project/f90nml/
https://www.datacamp.com/community/tutorials/pip-python-package-manager


UFS Short-Range Weather App Users Guide, Release v1.0

conda install jinja2 pyyaml f90nml

Otherwise you may be able to use pip3 (the Python3 package manager; may need to be installed
separately depending on your platform):

pip3 install jinja2 pyyaml f90nml

Running the graphics scripts in ${WORKDIR}/ufs-srweather-app/regional_workflow/ush/Python
will require the additional packages pygrib, cartopy, matplotlib, scipy, and pillow. These can
be installed in the same way as described above.

For the final step of creating and running an experiment, the exact methods will depend on if you
are running with or without a workflow manager (Rocoto).

8.5 Running Without a Workflow Manager: Generic Linux and macOSPlatforms
Now that the code has been built, you can stage your data as described in Section 7.3.

Once the data has been staged, setting up your experiment on a platform without a workflow
manager is similar to the procedure for other platforms described in earlier chapters. Enter the
${WORKDIR}/ufs-srweather-app/regional_workflow/ush directory and configure the workflow by
creating a config.sh file as described in Chapter 5. There will be a few specific settings that
you may need change prior to generating the experiment compared to the instructions for pre-
configured platforms:

MACHINE="MACOS" or MACHINE="LINUX" These are the two MACHINE settings for generic, non-
Rocoto-based platforms; you should choose the one most appropriate for your machine.
MACOS has its own setting due to some differences in how command-line utilities function
on Darwin-based operating systems.

LAYOUT_X=2 LAYOUT_Y=2

These are the settings that control the MPI decomposition when running
the weather model. There are default values, but for your machine it
is recommended that you specify your own layout to achieve the correct
number of MPI processes for your application. In total, your machine
should be able to handle LAYOUT_X×LAYOUT_Y+WRTCMP_write_tasks_per_group tasks.
WRTCMP_write_tasks_per_group is the number of MPI tasks that will be set aside for
writing model output, and it is a setting dependent on the domain you have selected.
You can find and edit the value of this variable in the file regional_workflow/ush/
set_predef_grid_params.sh.

RUN_CMD_UTILS="mpirun -np 4" This is the run command for MPI-enabled pre-processing utilities.
Depending on your machine and your MPI installation, you may need to use a different
command for launching an MPI-enabled executable.

RUN_CMD_POST="mpirun -np 1" This is the same as RUN_CMD_UTILS but for UPP.

80 Chapter 8. Configuring a New Platform



UFS Short-Range Weather App Users Guide, Release v1.0

RUN_CMD_FCST='mpirun -np ${PE_MEMBER01}' This is the run command for the weather model. It
is strongly recommended that you use the variable ${PE_MEMBER01} here, which is calculated
within the workflow generation script (based on the layout and write tasks described above)
and is the number of MPI tasks that the weather model will expect to run with. Running the
weather model with a different number of MPI tasks than the workflow has been set up for
can lead to segmentation faults and other errors. It is also important to use single quotes here
(or escape the “$” character) so that PE_MEMBER01 is not referenced until runtime, since it is
not defined at the beginning of the workflow generation script.

FIXgsm=${WORKDIR}/data/fix_am The location of the fix_am static files. This and the following
two static data sets will need to be downloaded to your machine, as described in Section
7.3.1.

TOPO_DIR=${WORKDIR}/data/fix_orog Location of fix_orog static files

SFC_CLIMO_INPUT_DIR=${WORKDIR}/data/fix_sfc_climo Location of climo_fields_netcdf static
files

Once you are happy with your settings in config.sh, it is time to run the workflow and move to
the experiment directory (that is printed at the end of the script’s execution):

./generate_FV3LAM_wflow.sh
export EXPTDIR="your experiment directory"
cd $EXPTDIR

From here, you can run each individual task of the UFS SRW App using the provided run scripts:

cp ${WORKDIR}/ufs-srweather-app/regional_workflow/ush/wrappers/*sh .
cp ${WORKDIR}/ufs-srweather-app/regional_workflow/ush/wrappers/README.md .

The README.md file will contain instructions on the order that each script should be run in. An
example of wallclock times for each task for an example run (2017 Macbook Pro, macOS Catalina,
25km CONUS domain, 48hr forecast) is listed in Table 8.1.

Table 8.1: Example wallclock times for each workflow task.
UFS Component Script Name Num. Cores Wall time
UFS_UTILS ./run_get_ics.sh n/a 3 s
UFS_UTILS ./run_get_lbcs.sh n/a 3 s
UFS_UTILS ./run_make_grid.sh n/a 9 s
UFS_UTILS ./run_make_orog.sh 4 1 m
UFS_UTILS ./run_make_sfc_climo.sh 4 27 m
UFS_UTILS ./run_make_ics.sh 4 5 m
UFS_UTILS ./run_make_lbcs.sh 4 5 m
ufs-weather-model ./run_fcst.sh 6 1h 40 m
EMC_post ./run_post.sh 1 7 m

8.5. Running Without a WorkflowManager: Generic Linux and macOS Platforms 81



UFS Short-Range Weather App Users Guide, Release v1.0

8.6 Running on a New Platform with Rocoto WorkflowManager
All official HPC platforms for the UFS SRW App release make use of the Rocoto workflow manage-
ment software for running experiments. If you would like to use the Rocoto workflow manager
on a new machine, you will have to make modifications to the scripts in the regional_workflow
repository. The easiest way to do this is to search the files in the regional_workflow/scripts
and regional_workflow/ush directories for an existing platform name (e.g. CHEYENNE) and add a
stanza for your own unique machine (e.g. MYMACHINE). As an example, here is a segment of code
from regional_workflow/ush/setup.sh, where the highlighted text is an example of the kind of
change you will need to make:

...
"CHEYENNE")
WORKFLOW_MANAGER="rocoto"
NCORES_PER_NODE=36
SCHED="${SCHED:-pbspro}"
QUEUE_DEFAULT=${QUEUE_DEFAULT:-"regular"}
QUEUE_HPSS=${QUEUE_HPSS:-"regular"}
QUEUE_FCST=${QUEUE_FCST:-"regular"}
;;

"MYMACHINE")
WORKFLOW_MANAGER="rocoto"
NCORES_PER_NODE=your_machine_cores_per_node
SCHED="${SCHED:-your_machine_scheduler}"
QUEUE_DEFAULT=${QUEUE_DEFAULT:-"your_machine_queue_name"}
QUEUE_HPSS=${QUEUE_HPSS:-"your_machine_queue_name"}
QUEUE_FCST=${QUEUE_FCST:-"your_machine_queue_name"}
;;

"STAMPEDE")
WORKFLOW_MANAGER="rocoto"

...

You will also need to add MYMACHINE to the list of valid machine names in regional_workflow/ush/
valid_param_vals.sh. The minimum list of files that will need to be modified in this way are as
follows (all in the regional_workflow repository):

• scripts/exregional_run_post.sh, line 131

• scripts/exregional_make_sfc_climo.sh, line 162

• scripts/exregional_make_lbcs.sh, line 114

• scripts/exregional_make_orog.sh, line 147

• scripts/exregional_make_grid.sh, line 145

• scripts/exregional_run_fcst.sh, line 140

• scripts/exregional_make_ics.sh, line 114

• ush/setup.sh, lines 431 and 742

82 Chapter 8. Configuring a New Platform



UFS Short-Range Weather App Users Guide, Release v1.0

• ush/launch_FV3LAM_wflow.sh, line 104

• ush/get_extrn_mdl_file_dir_info.sh, many lines, starting around line 589

• ush/valid_param_vals.sh, line 3

• ush/load_modules_run_task.sh, line 126

• ush/set_extrn_mdl_params.sh, many lines, starting around line 61

The line numbers may differ slightly given future bug fixes. Additionally, you may need to make
further changes depending on the exact setup of your machine and Rocoto installation. Informa-
tion about installing and configuring Rocoto on your machine can be found in the Rocoto Github
repository: https://github.com/christopherwharrop/rocoto

8.7 Software/Operating System Requirements
Those requirements highlighted in bold are included in the NCEPLIBS-external (https://github.
com/NOAA-EMC/NCEPLIBS-external) package.

Minimum platform requirements for the UFS SRW Application and NCEPLIBS:

• POSIX-compliant UNIX-style operating system

• >40 GB disk space

– 18 GB input data from GFS, RAP, and HRRR for Graduate Student Test

– 6 GB for NCEPLIBS-external and NCEPLIBS full installation

– 1 GB for ufs-srweather-app installation

– 11 GB for 48hr forecast on CONUS 25km domain

• 4GB memory (CONUS 25km domain)

• Fortran compiler with full Fortran 2008 standard support

• C and C++ compiler

• Python v3.6+, including prerequisite packages jinja2, pyyaml and f90nml

• Perl 5

• git v1.8+

• MPI (MPICH, OpenMPI, or other implementation)

• wgrib2

• CMake v3.12+

• Software libraries

– netCDF (C and Fortran libraries)

– HDF5

– ESMF 8.0.0

8.7. Software/Operating System Requirements 83

https://github.com/christopherwharrop/rocoto
https://github.com/NOAA-EMC/NCEPLIBS-external
https://github.com/NOAA-EMC/NCEPLIBS-external


UFS Short-Range Weather App Users Guide, Release v1.0

– Jasper

– libJPG

– libPNG

– zlib

macOS-specific prerequisites:

• brew install wget

• brew install cmake

• brew install coreutils

• brew install pkg-config

• brew install gnu-sed

Optional but recommended prerequisites:

• Conda for installing/managing Python packages

• Bash v4+

• Rocoto Workflow Management System (1.3.1)

• CMake v3.15+

• Python packages scipy, matplotlib, pygrib, cartopy, and pillow for graphics

84 Chapter 8. Configuring a New Platform



CHAPTER
NINE

WORKFLOW END-TO-END (WE2E) TESTS

The SRW Application’s experiment generation system contains a set of end-to-end tests that exercise
various configurations of that system as well as those of the pre-processing, UFS Weather Model,
and UPP post-processing codes. The script to run these tests is named run_experiments.sh and
is located in the directory ufs-srweather-app/regional_workflow/tests. A complete list of the
available tests can be found in baselines_list.txt in that directory. This list is extensive; it
is not recommended to run all of the tests as some are computationally expensive. A subset of
the tests supported for this release of the SRW Application can be found in the file testlist.
release_public_v1.txt.

The base experiment configuration file for each test is located in the baseline_configs subdirectory.
Each file is named config.${expt_name}.sh, where ${expt_name} is the name of the corresponding
test configuration. These base configuration files are subsets of the full config.sh experiment
configuration file used in Section 2.4.1 and described in Section 4.5.2. For each test that the user
wants to run, the run_experiments.sh script reads in its base configuration file and generates from
it a full config.sh file (a copy of which is placed in the experiment directory for the test).

Since run_experiments.sh calls generate_FV3LAM_wflow.sh for each test to be run, the Python
modules required for experiment generation must be loaded before run_experiments.sh can be
called. See Section 2.4.2 for information on loading the Python environment on supported plat-
forms. Note also that run_experiments.sh assumes that all of the executables have been built.

The user specifies the set of test configurations that the run_experiments.sh script will run by cre-
ating a text file, say expts_list.txt, that contains a list of tests (one per line) and passing the
name of that file to the script. For each test in the file, run_experiments.sh will generate an exper-
iment directory and, by default, will continuously (re)launch its workflow by inserting a new cron
job in the user’s cron table. This cron job calls the workflow launch script launch_FV3LAM_wflow.sh
located in the experiment directory until the workflow either completes successfully (i.e. all tasks
are successful) or fails (i.e. at least one task fails). The cron job is then removed from the user’s
cron table.

The script run_experiments.sh accepts the command line arguments shown in Table 9.1.

85



UFS Short-Range Weather App Users Guide, Release v1.0

Table 9.1: Command line arguments for the WE2E testing
script run_experiments.sh.

Command Line
Argument

Description Optional

expts_file Name of the file containing the list
of tests to run. If expts_file is the
absolute path to a file, it is used as
is. If it is a relative path (including
just a file name), it is assumed to be
given relative to the path from which
this script is called.

No

machine Machine name No
account HPC account to use No
use_cron_to_relaunchFlag that specifies whether or not to

use a cron job to continuously re-
launch the workflow

Yes. Default value is TRUE (set in
run_experiments.sh).

cron_relaunch_intvl_mntsFrequency (in minutes) with which
cron will relaunch the workflow

Used only if use_cron_to_relaunch
is set to TRUE. Default value is “02”
(set in run_experiments.sh).

For example, to run the tests named grid_RRFS_CONUS_25km_ics_FV3GFS_lbcs_FV3GFS_suite_GFS_v15p2
and grid_RRFS_CONUS_25km_ics_HRRR_lbcs_RAP_suite_RRFS_v1alpha on Cheyenne, first create
the file expts_list.txt containing the following lines:

grid_RRFS_CONUS_25km_ics_FV3GFS_lbcs_FV3GFS_suite_GFS_v15p2
grid_RRFS_CONUS_25km_ics_HRRR_lbcs_RAP_suite_RRFS_v1alpha

Then, from the ufs-srweather-app/regional_workflow/tests directory, issue the following com-
mand:

./run_experiments.sh expts_file="expts_list.txt" machine=cheyenne account="account_name"

where account_name should be replaced by the account to which to charge the core-hours used
by the tests. Running this command will automatically insert an entry into the user’s crontab
that regularly (re)launches the workflow. The experiment directories will be created under
ufs-srweather-app/../expt_dirs, and the name of each experiment directory will be identical
to the name of the corresponding test.

To see if a test completed successfully, look at the end of the log.launch_FV3LAM_wflow file (which
is the log file that launch_FV3LAM_wflow.sh appends to every time it is called) located in the exper-
iment directory for that test:

Summary of workflow status:
~~~~~~~~~~~~~~~~~~~~~~~~~~

1 out of 1 cycles completed.
Workflow status: SUCCESS

(continues on next page)

86 Chapter 9. Workflow End-to-End (WE2E) Tests

UFS Short-Range Weather App Users Guide, Release v1.0

(continued from previous page)

==
End of output from script "launch_FV3LAM_wflow.sh".
==

Use of cron for all tests to be run by run_experiments.sh can be turned off by instead issuing the
following command:

./run_experiments.sh expts_file="expts_list.txt" machine=cheyenne account="account_name" use_
→˓cron_to_relaunch=FALSE

In this case, the experiment directories for the tests will be created, but their workflows will not
be (re)launched. For each test, the user will have to go into the experiment directory and either
manually call the launch_FV3LAM_wflow.sh script or use the Rocoto commands described in Chapter
12 to (re)launch the workflow. Note that if using the Rocoto commands directly, the log file log.
launch_FV3LAM_wflow will not be created; in this case, the status of the workflow can be checked
using the rocotostat command (see Chapter 12).

87

UFS Short-Range Weather App Users Guide, Release v1.0

88 Chapter 9. Workflow End-to-End (WE2E) Tests

CHAPTER
TEN

GRAPHICS GENERATION

Two Python plotting scripts are provided to generate plots from the FV3-LAM post-processed GRIB2
output over the CONUS for a number of variables, including:

• 2-m temperature

• 2-m dew point temperature

• 10-m winds

• 500 hPa heights, winds, and vorticity

• 250 hPa winds

• Accumulated precipitation

• Composite reflectivity

• Surface-based CAPE/CIN

• Max/Min 2-5 km updraft helicity

• Sea level pressure (SLP)

The Python scripts are located under ufs-srweather-app/regional_workflow/ush/Python. The
script plot_allvars.py plots the output from a single cycle within an experiment, while the script
plot_allvars_diff.py plots the difference between the same cycle from two different experiments
(e.g. the experiments may differ in some aspect such as the physics suite used). If plotting the
difference, the two experiments must be on the same domain and available for the same cycle
starting date/time and forecast hours.

The Python scripts require a cycle starting date/time in YYYYMMDDHH format, a starting forecast
hour, an ending forecast hour, a forecast hour increment, the paths to one or two experiment direc-
tories, and a path to the directory where the Cartopy Natural Earth shape files are located. The full
set of Cartopy shape files can be downloaded at https://www.naturalearthdata.com/downloads/.
For convenience, the small subset of files required for these Python scripts can be obtained from
the EMC ftp data repository or from AWS cloud storage. In addition, the Cartopy shape files are
available on a number of Level 1 platforms in the following locations:

On Cheyenne:

/glade/p/ral/jntp/UFS_SRW_app/tools/NaturalEarth

89

https://www.naturalearthdata.com/downloads/
https://ftp.emc.ncep.noaa.gov/EIB/UFS/SRW/v1p0/natural_earth/natural_earth_ufs-srw-release-v1.0.0.tar.gz
https://ufs-data.s3.amazonaws.com/public_release/ufs-srweather-app-v1.0.0/natural_earth/natural_earth_ufs-srw-release-v1.0.0.tar.gz

UFS Short-Range Weather App Users Guide, Release v1.0

On Hera:

/scratch2/BMC/det/UFS_SRW_app/v1p0/fix_files/NaturalEarth

On Jet:

/lfs4/BMC/wrfruc/FV3-LAM/NaturalEarth

On Orion:

/work/noaa/gsd-fv3-dev/UFS_SRW_App/v1p0/fix_files/NaturalEarth

On Gaea:

/lustre/f2/pdata/esrl/gsd/ufs/NaturalEarth

The medium scale (1:50m) cultural and physical shapefiles are used to create coastlines and other
geopolitical borders on the map. Cartopy provides the ‘background_img()’ method to add back-
ground images in a convenient way. The default scale (resolution) of background attributes in the
Python scripts is 1:50m Natural Earth I with Shaded Relief and Water, which should be sufficient
for most regional applications.

The appropriate environment must be loaded to run the scripts, which require Python 3 with the
scipy, matplotlib, pygrib, cartopy, and pillow packages. This Python environment has already
been set up on Level 1 platforms and can be activated as follows:

On Cheyenne:

module load ncarenv
ncar_pylib /glade/p/ral/jntp/UFS_SRW_app/ncar_pylib/python_graphics

On Hera and Jet:

module use -a /contrib/miniconda3/modulefiles
module load miniconda3
conda activate pygraf

On Orion:

module use -a /apps/contrib/miniconda3-noaa-gsl/modulefiles
module load miniconda3
conda activate pygraf

On Gaea:

module use /lustre/f2/pdata/esrl/gsd/contrib/modulefiles
module load miniconda3/4.8.3-regional-workflow

Note: If using one of the batch submission scripts described below, the user does not need to
manually load an environment because the scripts perform this task.

90 Chapter 10. Graphics Generation

UFS Short-Range Weather App Users Guide, Release v1.0

10.1 Plotting output from one experiment
Before generating plots, it is convenient to change location to the directory containing the plotting
scripts:

cd ufs-srweather-app/regional_workflow/ush/Python

To generate plots for a single cycle, the plot_allvars.py script must be called with the following
six command line arguments:

1. Cycle date/time (CDATE) in YYYYMMDDHH format

2. Starting forecast hour

3. Ending forecast hour

4. Forecast hour increment

5. The top level of the experiment directory EXPTDIR containing the post-processed data. The
script will look for the data files in the directory EXPTDIR/CDATE/postprd.

6. The base directory CARTOPY_DIR of the cartopy shapefiles. The script will look for the shape
files (*.shp) in the directory CARTOPY_DIR/shapefiles/natural_earth/cultural.

An example of plotting output from a cycle generated using the sample experiment/workflow con-
figuration in the config.community.sh script (which uses the GFSv15p2 suite definition file) is as
follows:

python plot_allvars.py 2019061500 6 48 6 /path-to/expt_dirs/test_CONUS_25km_GFSv15p2 /path-
→˓to/NaturalEarth

The output files (in .png format) will be located in the directory EXPTDIR/CDATE/postprd, where in
this case EXPTDIR is /path-to/expt_dirs/test_CONUS_25km_GFSv15p2 and CDATE is 2019061500.

10.2 Plotting differences from two experiments
To generate difference plots, the plot_allvars_diff.py script must be called with the following
seven command line arguments:

1. Cycle date/time (CDATE) in YYYYMMDDHH format

2. Starting forecast hour

3. Ending forecast hour

4. Forecast hour increment

5. The top level of the first experiment directory EXPTDIR1 containing the first set of post-
processed data. The script will look for the data files in the directory EXPTDIR1/CDATE/
postprd.

10.1. Plotting output from one experiment 91

UFS Short-Range Weather App Users Guide, Release v1.0

6. The top level of the first experiment directory EXPTDIR2 containing the second set of post-
processed data. The script will look for the data files in the directory EXPTDIR2/CDATE/
postprd.

7. The base directory CARTOPY_DIR of the cartopy shapefiles. The script will look for the shape
files (*.shp) in the directory CARTOPY_DIR/shapefiles/natural_earth/cultural.

An example of plotting differences from two experiments for the same date and predefined
domain where one uses the “FV3_GFS_v15p2” suite definition file (SDF) and one using the
“FV3_RRFS_v1alpha” SDF is as follows:

python plot_allvars_diff.py 2019061518 6 18 3 /path-to/expt_dirs1/test_CONUS_3km_GFSv15p2 /
→˓path-to/expt_dirs2/test_CONUS_3km_RRFSv1alpha /path-to/NaturalEarth

In this case, the output png files will be located in the directory EXPTDIR1/CDATE/postprd.

10.3 Submitting plotting scripts through a batch system
If the Python scripts are being used to create plots of multiple forecast lead times and forecast
variables, then you may need to submit them to the batch system. Example scripts are provided
called sq_job.sh and sq_job_diff.sh for use on a platform such as Hera that uses the Slurm
job scheduler or qsub_job.sh and qsub_job_diff.sh for use on a platform such as Cheyenne that
uses PBS as the job scheduler. Examples of these scripts are located under ufs-srweather-app/
regional_workflow/ush/Python and can be used as a starting point to create a batch script for
your platform/job scheduler of use.

At a minimum, the account should be set appropriately prior to job submission:

#SBATCH --account=an_account

Depending on the platform you are running on, you may also need to adjust the settings to use the
correct Python environment and path to the shape files.

When using these batch scripts, several environment variables must be set prior to submission. If
plotting output from a single cycle, the variables to set are HOMErrfs and EXPTDIR. In this case, if
the user’s login shell is csh/tcsh, these variables can be set as follows:

setenv HOMErrfs /path-to/ufs-srweather-app/regional_workflow
setenv EXPTDIR /path-to/experiment/directory

If the user’s login shell is bash, they can be set as follows:

export HOMErrfs=/path-to/ufs-srweather-app/regional_workflow
export EXPTDIR=/path-to/experiment/directory

If plotting the difference between the same cycle from two different experiments, the variables to
set are HOMErrfs, EXPTDIR1. and EXPTDIR2. In this case, if the user’s login shell is csh/tcsh, these
variables can be set as follows:

92 Chapter 10. Graphics Generation

UFS Short-Range Weather App Users Guide, Release v1.0

setenv HOMErrfs /path-to/ufs-srweather-app/regional_workflow
setenv EXPTDIR1 /path-to/experiment/directory1
setenv EXPTDIR2 /path-to/experiment/directory2

If the user’s login shell is bash, they can be set as follows:

export HOMErrfs=/path-to/ufs-srweather-app/regional_workflow
export EXPTDIR1=/path-to/experiment/directory1
export EXPTDIR2=/path-to/experiment/directory2

In addition, the variables CDATE, FCST_START, FCST_END, and FCST_INC in the batch scripts can be
modified depending on the user’s needs. By default, CDATE is set as follows in the batch scripts:

export CDATE=${DATE_FIRST_CYCL}${CYCL_HRS}

This sets CDATE to the first cycle in the set of cycles that the experiment has run. If the experiment
contains multiple cycles and the user wants to plot output from a cycle other than the very first
one, CDATE in the batch scripts will have to be set to the specific YYYYMMDDHH value for that
cycle. Also, to plot hourly forecast output, FCST_INC should be set to 1; to plot only a subset of the
output hours, FCST_START, FCST_END, and FCST_INC must be set accordingly, e.g. to generate plots
for every 6th forecast hour starting with forecast hour 6 and ending with the last forecast hour, use

export FCST_START=6
export FCST_END=${FCST_LEN_HRS}
export FCST_INC=6

The scripts must be submitted using the command appropriate for the job scheduler used on your
platform. For example, on Hera, sq_job.sh can be submitted as follows:

sbatch sq_job.sh

On Cheyenne, qsub_job.sh can be submitted as follows:

qsub qsub_job.sh

10.3. Submitting plotting scripts through a batch system 93

UFS Short-Range Weather App Users Guide, Release v1.0

94 Chapter 10. Graphics Generation

CHAPTER
ELEVEN

FAQ

11.1 How do I turn On/Off the Cycle-Independent Workflow Tasks
The first three pre-processing tasks make_grid, make_orog, and make_sfc_climo are cycle-
independent, meaning that they only need to be run once per experiment. If the grid, orography,
and surface climatology files that these tasks generate are already available (e.g. from a previous
experiment that used the same grid as the current), then these tasks can be skipped by having
the workflow use those pre-generated files. This can be done by adding the following lines to the
config.sh script before running the generate_FV3LAM_wflow.sh script:

RUN_TASK_MAKE_GRID=”FALSE”
GRID_DIR=”/path/to/directory/containing/grid/files”
RUN_TASK_MAKE_OROG=”FALSE”
OROG_DIR=”/path/to/directory/containing/orography/files”
RUN_TASK_MAKE_SFC_CLIMO=”FALSE”
SFC_CLIMO_DIR=”/path/to/directory/containing/surface/climatology/files”

The RUN_TASK_MAKE_GRID, RUN_TASK_MAKE_OROG, and RUN_TASK_MAKE_SFC_CLIMO flags disable their
respective tasks, and GRID_DIR, OROG_DIR, and SFC_CLIMO_DIR specify the directories in which the
workflow can find the pre-generated grid, orography, and surface climatology files, respectively
(these directories may be the same, i.e. all three sets of files may be placed in the same location).
By default, the RUN_TASK_MAKE_... flags are set to TRUE in config_defaults.sh, i.e. the workflow
will by default run the make_grid, make_orog, and make_sfc_climo tasks.

11.2 How do I define an experiment name?
The name of the experiment is set in the config.sh file using the variable EXPT_SUBDIR. See Section
2.4.1 for more details.

95

UFS Short-Range Weather App Users Guide, Release v1.0

11.3 How do I change the Suite Definition File (SDF)?
The SDF is set in the config.sh file using the variable CCPP_PHYS_SUITE. When the
generate_FV3LAM_wflow.sh script is run, the SDF file is copied from its location in the forecast
model directory to the experiment directory EXPTDIR.

11.4 How do I restart a DEAD task?
On platforms that utilize Rocoto workflow software (such as NCAR’s Cheyenne machine), some-
times if something goes wrong with the workflow a task may end up in the DEAD state:

rocotostat -w FV3SAR_wflow.xml -d FV3SAR_wflow.db -v 10
CYCLE TASK JOBID STATE EXIT STATUS TRIES DURATION

===
201905200000 make_grid 9443237 QUEUED - 0 0.0
201905200000 make_orog - - - - -
201905200000 make_sfc_climo - - - - -
201905200000 get_extrn_ics 9443293 DEAD 256 3 5.0

This means that the dead task has not completed successfully, so the workflow has stopped. Once
the issue has been identified and fixed (by referencing the log files), the failed task can re-run using
the rocotorewind command:

rocotorewind -w FV3SAR_wflow.xml -d FV3SAR_wflow.db -v 10 -c 201905200000 -t get_extrn_ics

where -c specifies the cycle date (first column of rocotostat output) and -t represents the task
name (second column of rocotostat output). After using rocotorewind, the next time rocotorun is
used to advance the workflow, the job will be resubmitted.

11.5 How do I change the grid?
To change the predefined grid, you need to modify the PREDEF_GRID_NAME variable in the config.sh
script which the user has created to generate an experiment configuration and workflow. Users can
choose from one of three predefined grids for the SRW Application:

RRFS_CONUS_3km
RRFS_CONUS_13km
RRFS_CONUS_25km

An option also exists to create a user-defined grid, with information available in Chapter 6.

96 Chapter 11. FAQ

CHAPTER
TWELVE

ADDITIONAL ROCOTO INFORMATION

The tasks in the SRW Application (Table 4.6) are typically run using the Rocoto Workflow Manager.
Rocoto is a Ruby program that interfaces with the batch system on an HPC system to run and
manage dependencies between the tasks. Rocoto submits jobs to the HPC batch system as the
task dependencies allow, and runs one instance of the workflow for a set of user-defined cycles.
More information on Rocoto can be found at https://github.com/christopherwharrop/rocoto/wiki/
documentation.

The SRW App workflow is defined in a Jinja-enabled Rocoto XML template called
FV3LAM_wflow.xml, which resides in the regional_workflow/ufs/templates directory. When the
generate_FV3LAM_wflow.sh script is run, the fill_jinja_template.py script is called, and the pa-
rameters in the template file are filled in. The completed file contains the workflow task names,
parameters needed by the job scheduler, and task interdependencies. The generated XML file is
then copied to the experiment directory: $EXPTDIR/FV3LAM_wflow.xml.

There are a number of Rocoto commands available to run and monitor the workflow and can
be found in the complete Rocoto documentation. Descriptions and examples of commonly used
commands are discussed below.

12.1 rocotorun
The rocotorun command is used to run the workflow by submitting tasks to the batch system. It will
automatically resubmit failed tasks and can recover from system outages without user intervention.
An example is:

rocotorun -w /path/to/workflow/xml/file -d /path/to/workflow/database/file -v 10

where

• -w specifies the name of the workflow definition file. This must be an XML file.

• -d specifies the name of the database file that is to be used to store the state of the workflow.
The database file is a binary file created and used only by Rocoto and need not exist prior to
the first time the command is run.

• -v (optional) specified level of verbosity. If no level is specified, a level of 1 is used.

From the $EXPTDIR directory, the rocotorun command for the workflow would be:

97

https://github.com/christopherwharrop/rocoto/wiki/documentation
https://github.com/christopherwharrop/rocoto/wiki/documentation
https://github.com/christopherwharrop/rocoto/wiki/documentation

UFS Short-Range Weather App Users Guide, Release v1.0

rocotorun -w FV3LAM_wflow.xml -d FV3LAM_wflow.db

It is important to note that the rocotorun process is iterative; the command must be executed many
times before the entire workflow is completed, usually every 2-10 minutes. This command can be
placed in the user’s crontab and cron will call it with a specified frequency. More information on this
command can be found at https://github.com/christopherwharrop/rocoto/wiki/documentation.

The first time the rocotorun command is executed for a workflow, the files FV3LAM_wflow.db
and FV3LAM_wflow_lock.db are created. There is usually no need for the user to modify these
files. Each time this command is executed, the last known state of the workflow is read from the
FV3LAM_wflow.db file, the batch system is queried, jobs are submitted for tasks whose dependencies
have been satisfied, and the current state of the workflow is saved in FV3LAM_wflow.db. If there is a
need to relaunch the workflow from scratch, both database files can be deleted, and the workflow
can be run using rocotorun or the launch script launch_FV3LAM_wflow.sh (executed multiple times
as described above).

12.2 rocotostat
rocotostat is a tool for querying the status of tasks in an active Rocoto workflow. Once the work-
flow has been started with the rocotorun command, Rocoto can also check the status of the work-
flow using the rocotostat command:

rocotostat -w /path/to/workflow/xml/file -d /path/to/workflow/database/file

Executing this command will generate a workflow status table similar to the following:

CYCLE TASK JOBID STATE ␣
→˓EXIT STATUS TRIES DURATION
===
201907010000 make_grid 175805 QUEUED ␣
→˓ - 0 0.0
201907010000 make_orog - - ␣
→˓ - - -
201907010000 make_sfc_climo - - ␣
→˓ - - -
201907010000 get_extrn_ics druby://hfe01:36261 SUBMITTING ␣
→˓ - 0 0.0
201907010000 get_extrn_lbcs druby://hfe01:36261 SUBMITTING ␣
→˓ - 0 0.0
201907010000 make_ics - - ␣
→˓ - - -
201907010000 make_lbcs - - ␣
→˓ - - -
201907010000 run_fcst - - ␣
→˓ - - -
201907010000 run_post_f000 - - ␣
→˓ - - -
201907010000 run_post_f001 - - ␣
→˓ - - -

(continues on next page)

98 Chapter 12. Additional Rocoto Information

https://github.com/christopherwharrop/rocoto/wiki/documentation

UFS Short-Range Weather App Users Guide, Release v1.0

(continued from previous page)

201907010000 run_post_f002 - - ␣
→˓ - - -
201907010000 run_post_f003 - - ␣
→˓ - - -
201907010000 run_post_f004 - - ␣
→˓ - - -
201907010000 run_post_f005 - - ␣
→˓ - - -
201907010000 run_post_f006 - - ␣
→˓ - - -

This table indicates that the make_grid task was sent to the batch system and is now queued, while
the get_extrn_ics and get_extrn_lbcs tasks for the 201907010000 cycle are in the process of being
submitted to the batch system.

Note that issuing a rocotostat command without an intervening rocotorun command will not
result in an updated workflow status table; it will print out the same table. It is the rocotorun com-
mand that updates the workflow database file (in this case FV3LAM_wflow.db, located in $EXPTDIR);
the rocotostat command reads the database file and prints the table to the screen. To see an
updated table, the rocotorun command must be executed followed by the rocotostat command.

After issuing the rocotorun command several times (over the course of several minutes or longer,
depending on your grid size and computational resources), the output of the rocotostat command
should look like this:

CYCLE TASK JOBID STATE ␣
→˓EXIT STATUS TRIES DURATION
==
201907010000 make_grid 175805 SUCCEEDED ␣
→˓ 0 1 10.0
201907010000 make_orog 175810 SUCCEEDED ␣
→˓ 0 1 27.0
201907010000 make_sfc_climo 175822 SUCCEEDED ␣
→˓ 0 1 38.0
201907010000 get_extrn_ics 175806 SUCCEEDED ␣
→˓ 0 1 37.0
201907010000 get_extrn_lbcs 175807 SUCCEEDED ␣
→˓ 0 1 53.0
201907010000 make_ics 175825 SUCCEEDED ␣
→˓ 0 1 99.0
201907010000 make_lbcs 175826 SUCCEEDED ␣
→˓ 0 1 90.0
201907010000 run_fcst 175937 RUNNING ␣
→˓ - 0 0.0
201907010000 run_post_f000 - - ␣
→˓ - - -
201907010000 run_post_f001 - - ␣
→˓ - - -
201907010000 run_post_f002 - - ␣
→˓ - - -
201907010000 run_post_f003 - - ␣
→˓ - - - (continues on next page)

12.2. rocotostat 99

UFS Short-Range Weather App Users Guide, Release v1.0

(continued from previous page)

201907010000 run_post_f004 - - ␣
→˓ - - -
201907010000 run_post_f005 - - ␣
→˓ - - -
201907010000 run_post_f006 - - ␣
→˓ - - -

When the workflow runs to completion, all tasks will be marked as SUCCEEDED. The log files
from the tasks are located in $EXPTDIR/log. If any tasks fail, the corresponding log file can be
checked for error messages. Optional arguments for the rocotostat command can be found at
https://github.com/christopherwharrop/rocoto/wiki/documentation.

12.3 rocotocheck
Sometimes, issuing a rocotorun command will not cause the next task to launch. rocotocheck is a
tool that can be used to query detailed information about a task or cycle in the Rocoto workflow.
To determine the cause of a particular task not being submitted, the rocotocheck command can be
used from the $EXPTDIR directory as follows:

rocotocheck -w /path/to/workflow/xml/file -d /path/to/workflow/database/ file -c␣
→˓YYYYMMDDHHMM -t taskname

where

• -c is the cycle to query

• -t is the task name

A specific example is:

rocotocheck -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10 -c 201907010000 -t run_fcst

This will result in output similar to the following:

Task: run_fcst
account: gsd-fv3
command: /scratch2/BMC/det/$USER/ufs-srweather-app/regional_workflow/ush/load_modules_run_

→˓task.sh "run_fcst" "/scratch2/BMC/det/$USER/ufs-srweather-app/regional_workflow/jobs/
→˓JREGIONAL_RUN_FCST"
cores: 24
final: false
jobname: run_FV3
join: /scratch2/BMC/det/$USER/expt_dirs/test_community/log/run_fcst_2019070100.log
maxtries: 3
name: run_fcst
nodes: 1:ppn=24
queue: batch
throttle: 9999999
walltime: 04:30:00

(continues on next page)

100 Chapter 12. Additional Rocoto Information

https://github.com/christopherwharrop/rocoto/wiki/documentation

UFS Short-Range Weather App Users Guide, Release v1.0

(continued from previous page)

environment
CDATE ==> 2019070100
CYCLE_DIR ==> /scratch2/BMC/det/$USER/UFS_CAM/expt_dirs/test_community/2019070100
PDY ==> 20190701
SCRIPT_VAR_DEFNS_FP ==> /scratch2/BMC/det/$USER/expt_dirs/test_community/var_defns.sh

dependencies
AND is satisfied
make_ICS_surf_LBC0 of cycle 201907010000 is SUCCEEDED
make_LBC1_to_LBCN of cycle 201907010000 is SUCCEEDED

Cycle: 201907010000
Valid for this task: YES
State: active
Activated: 2019-10-29 18:13:10 UTC
Completed: -
Expired: -

Job: 513615
State: DEAD (FAILED)
Exit Status: 1
Tries: 3
Unknown count: 0
Duration: 58.0

This shows that although all dependencies for this task are satisfied (see the dependencies section,
highlighted above), it cannot run because its maxtries value (highlighted) is 3. Rocoto will at-
tempt to launch it at most 3 times, and it has already been tried 3 times (the Tries value, also
highlighted).

The output of the rocotocheck command is often useful in determining whether the dependencies
for a given task have been met. If not, the dependencies section in the output of rocotocheck will
indicate this by stating that a dependency “is NOT satisfied”.

12.4 rocotorewind
rocotorewind is a tool that attempts to undo the effects of running a task and is commonly used to
rerun part of a workflow that has failed. If a task fails to run (the STATE is DEAD), and needs to be
restarted, the rocotorewind command will rerun tasks in the workflow. The command line options
are the same as those described in the rocotocheck section 12.3, and the general usage statement
looks like:

rocotorewind -w /path/to/workflow/xml/file -d /path/to/workflow/database/ file -c␣
→˓YYYYMMDDHHMM -t taskname

Running this command will edit the Rocoto database file FV3LAM_wflow.db to remove evidence that
the job has been run. rocotorewind is recommended over rocotoboot for restarting a task, since
rocotoboot will force a specific task to run, ignoring all dependencies and throttle limits. The
throttle limit, denoted by the variable cyclethrottle in the FV3LAM_wflow.xml file, limits how many

12.4. rocotorewind 101

UFS Short-Range Weather App Users Guide, Release v1.0

cycles can be active at one time. An example of how to use this command to rerun the forecast task
from $EXPTDIR is:

rocotorewind -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10 -c 201907010000 -t run_fcst

12.5 rocotoboot
rocotoboot will force a specific task of a cycle in a Rocoto workflow to run. All dependencies
and throttle limits are ignored, and it is generally recommended to use rocotorewind instead. An
example of how to use this command to rerun the make_ics task from $EXPTDIR is:

rocotoboot -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10 -c 201907010000 -t make_ics

102 Chapter 12. Additional Rocoto Information

CHAPTER
THIRTEEN

GLOSSARY

CCPP A forecast-model agnostic, vetted collection of codes containing atmospheric physical param-
eterizations and suites of parameterizations for use in Numerical Weather Prediction (NWP)
along with a framework that connects the physics to the host forecast model.

chgres_cube The preprocessing software used to create initial and boundary condition files to
“coldstart” the forecast model.

FV3 The Finite-Volume Cubed-Sphere dynamical core (dycore). Developed at NOAA’s Geophysical
Fluid Dynamics Laboratory (GFDL), it is a scalable and flexible dycore capable of both hydro-
static and non-hydrostatic atmospheric simulations. It is the dycore used in the UFS Weather
Model.

GRIB2 The second version of the World Meterological Organization’s (WMO) standard for dis-
tributing gridded data.

NCEP National Centers for Environmental Prediction, an arm of the National Weather Service,
consisting of nine centers. More information can be found at https://www.ncep.noaa.gov.

NCEPLIBS The software libraries created and maintained by NCEP that are required for running
chgres_cube, the UFS Weather Model, and UPP.

NCEPLIBS-external A collection of third-party libraries required to build NCEPLIBS, chgres_cube,
the UFS Weather Model, and UPP.

NCL An interpreted programming language designed specifically for scientific data analysis and
visualization. More information can be found at https://www.ncl.ucar.edu.

NEMS The NOAA Environmental Modeling System is a common modeling framework whose pur-
pose is to streamline components of operational modeling suites at NCEP.

NEMSIO A binary format for atmospheric model output from NCEP’s Global Forecast System
(GFS).

UFS The Unified Forecast System is a community-based, coupled comprehensive Earth modeling
system consisting of several applications (apps). These apps span regional to global domains
and sub-hourly to seasonal time scales. The UFS is designed to support the Weather En-
terprise and to be the source system for NOAA’s operational numerical weather prediction
applications. More information can be found at http://ufs-dev.rap.ucar.edu/index.html.

UFS_UTILS A collection of codes used by multiple UFS apps (e.g. the UFS Short-Range Weather
App, the UFS Medium-Range Weather App). The grid, orography, surface climatology, and

103

https://www.ncep.noaa.gov
https://www.ncl.ucar.edu
http://ufs-dev.rap.ucar.edu/index.html

UFS Short-Range Weather App Users Guide, Release v1.0

initial and boundary condition generation codes used by the UFS Short-Range Weather App
are all part of this collection.

UPP The Unified Post Processor is software developed at NCEP and used operationally to post-
process raw output from a variety of NCEP’s NWP models, including the FV3.

Weather Model A prognostic model that can be used for short- and medium-range research and
operational forecasts. It can be an atmosphere-only model or an atmospheric model coupled
with one or more additional components, such as a wave or ocean model.

104 Chapter 13. Glossary

BIBLIOGRAPHY

[BAB+ed] T.L. Black, J.A. Abeles, B.T. Blake, D. Jovic, E. Rogers, X. Zhang, E.A. Aligo, L.C. Daw-
son, Y. Lin, E. Strobach, P.C. Shafran, and J.R. Carley. A limited area modeling capabil-
ity for the finite-volume cubed-sphere (fv3) dynamical core. Monthly Weather Review,
Submitted.

105

UFS Short-Range Weather App Users Guide, Release v1.0

106 Bibliography

INDEX

C
CCPP, 103
chgres_cube, 103

F
FV3, 103

G
GRIB2, 103

N
NCEP, 103
NCEPLIBS, 103
NCEPLIBS-external, 103
NCL, 103
NEMS, 103
NEMSIO, 103

U
UFS, 103
UFS_UTILS, 103
UPP, 104

W
Weather Model, 104

107

	Introduction
	Pre-processor Utilities and Initial Conditions
	Forecast Model
	Post-processor
	Visualization Example
	Build System and Workflow
	User Support, Documentation, and Contributing Development
	Future Direction
	How to Use This Document

	Workflow Quick Start
	Download the UFS SRW Application Code
	Set up the Build Environment
	Build the Executables
	Generate the Workflow Experiment
	Set up config.sh file
	Set up the Python and other Environment Parameters
	Run the generate_FV3LAM_wflow.sh script

	Run the Workflow Using Rocoto
	Plot the Output

	Code Repositories and Directory Structure
	Hierarchical Repository Structure
	Directory Structure
	Regional Workflow Sub-Directories

	Experiment Directory Structure

	Short-Range Weather Application Overview
	Download from GitHub
	External Components
	Building the Executables for the Application
	Grid-specific Configuration
	Case-specific Configuration
	Default configuration: config_defaults.sh
	User-specific configuration: config.sh

	Python Environment for Workflow
	Generating a Regional Workflow Experiment
	Steps to a Generate a New Experiment
	Description of Workflow Tasks

	Launch of Workflow
	Launch with the launch_FV3LAM_wflow.sh script
	Manually launch by calling the rocotorun command
	Run the Workflow Using the Stand-alone Scripts

	Configuring the Workflow: config.sh and config_defaults.sh
	Platform Environment
	Parameters for Running Without a Workflow Manager
	Cron-Associated Parameters
	Directory Parameters
	NCO Mode Parameters
	Pre-Processing File Separator Parameters
	File Name Parameters
	Foreast Parameters
	Initial and Lateral Boundary Condition Generation Parameters
	User-Staged External Model Directory and File Parameters
	CCPP Parameter
	Grid Generation Parameters
	Computational Forecast Parameters
	Write-Component (Quilting) Parameters
	Predefined Grid Parameters
	Pre-existing Directory Parameter
	Verbose Parameter
	Pre-Processing Parameters
	Surface Climatology Parameter
	Fixed File Parameters
	Workflow Task Parameters
	Customized Post Configuration Parameters
	Halo Blend Parameter
	FVCOM Parameter
	Compiler Parameter

	Limited Area Model (LAM) Grids: Predefined and User-Generated Options
	Predefined Grids
	Creating User-Generated Grids

	Input and Output Files
	Input Files
	Initial and Boundary Condition Files
	Pre-processing (UFS_UTILS)
	UFS Weather Model
	Unified Post Processor (UPP)
	Workflow

	Output Files
	Initial and boundary condition files
	Pre-processing (UFS_UTILS)
	UFS Weather Model
	Unified Post Processor (UPP)

	Downloading and Staging Input Data
	Static Files
	Initial Condition Formats and Source
	Initial and Lateral Boundary Condition Organization
	Default Initial and Lateral Boundary Conditions
	Running the App for Different Dates
	Staging Initial Conditions Manually
	Coexistence of Multiple Files for the Same Date
	Best Practices for Conserving Disk Space and Keeping Files Safe

	Configuring a New Platform
	Installing NCEPLIBS-external
	Installing NCEPLIBS
	Building the UFS Short-Range Weather Application (UFS SRW App)
	Setting Up Your Python Environment
	Running Without a Workflow Manager: Generic Linux and macOS Platforms
	Running on a New Platform with Rocoto Workflow Manager
	Software/Operating System Requirements

	Workflow End-to-End (WE2E) Tests
	Graphics Generation
	Plotting output from one experiment
	Plotting differences from two experiments
	Submitting plotting scripts through a batch system

	FAQ
	How do I turn On/Off the Cycle-Independent Workflow Tasks
	How do I define an experiment name?
	How do I change the Suite Definition File (SDF)?
	How do I restart a DEAD task?
	How do I change the grid?

	Additional Rocoto Information
	rocotorun
	rocotostat
	rocotocheck
	rocotorewind
	rocotoboot

	Glossary
	Bibliography
	Index

