

UFS Short-Range Weather App Users Guide

	1. Introduction
	1.1. Pre-processor Utilities and Initial Conditions

	1.2. Forecast Model

	1.3. Post-processor

	1.4. Visualization Example

	1.5. Build System and Workflow

	1.6. User Support, Documentation, and Contributing Development

	1.7. Future Direction

	1.8. How to Use This Document

	2. Workflow Quick Start
	2.1. Download the UFS SRW Application Code

	2.2. Set up the Build Environment

	2.3. Build the Executables

	2.4. Generate the Workflow Experiment
	2.4.1. Set up config.sh file

	2.4.2. Set up the Python and other Environment Parameters

	2.4.3. Run the generate_FV3LAM_wflow.sh script

	2.5. Run the Workflow Using Rocoto

	2.6. Plot the Output

	3. Code Repositories and Directory Structure
	3.1. Hierarchical Repository Structure

	3.2. Directory Structure
	3.2.1. Regional Workflow Sub-Directories

	3.3. Experiment Directory Structure

	4. Short-Range Weather Application Overview
	4.1. Download from GitHub

	4.2. External Components

	4.3. Building the Executables for the Application

	4.4. Grid-specific Configuration

	4.5. Case-specific Configuration
	4.5.1. Default configuration: config_defaults.sh

	4.5.2. User-specific configuration: config.sh

	4.6. Python Environment for Workflow

	4.7. Generating a Regional Workflow Experiment
	4.7.1. Steps to a Generate a New Experiment

	4.7.2. Description of Workflow Tasks

	4.8. Launch of Workflow
	4.8.1. Launch with the launch_FV3LAM_wflow.sh script

	4.8.2. Manually launch by calling the rocotorun command

	4.8.3. Run the Workflow Using the Stand-alone Scripts

	5. Configuring the Workflow: config.sh and config_defaults.sh
	5.1. Platform Environment

	5.2. Parameters for Running Without a Workflow Manager

	5.3. Cron-Associated Parameters

	5.4. Directory Parameters

	5.5. NCO Mode Parameters

	5.6. Pre-Processing File Separator Parameters

	5.7. File Name Parameters

	5.8. Foreast Parameters

	5.9. Initial and Lateral Boundary Condition Generation Parameters

	5.10. User-Staged External Model Directory and File Parameters

	5.11. CCPP Parameter

	5.12. Grid Generation Parameters

	5.13. Computational Forecast Parameters

	5.14. Write-Component (Quilting) Parameters

	5.15. Predefined Grid Parameters

	5.16. Pre-existing Directory Parameter

	5.17. Verbose Parameter

	5.18. Pre-Processing Parameters

	5.19. Surface Climatology Parameter

	5.20. Fixed File Parameters

	5.21. Workflow Task Parameters

	5.22. Customized Post Configuration Parameters

	5.23. Halo Blend Parameter

	5.24. FVCOM Parameter

	5.25. Compiler Parameter

	6. Limited Area Model (LAM) Grids: Predefined and User-Generated Options
	6.1. Predefined Grids

	6.2. Creating User-Generated Grids

	7. Input and Output Files
	7.1. Input Files
	7.1.1. Initial and Boundary Condition Files

	7.1.2. Pre-processing (UFS_UTILS)

	7.1.3. UFS Weather Model

	7.1.4. Unified Post Processor (UPP)

	7.1.5. Workflow

	7.2. Output Files
	7.2.1. Initial and boundary condition files

	7.2.2. Pre-processing (UFS_UTILS)

	7.2.3. UFS Weather Model

	7.2.4. Unified Post Processor (UPP)

	7.3. Downloading and Staging Input Data
	7.3.1. Static Files

	7.3.2. Initial Condition Formats and Source

	7.3.3. Initial and Lateral Boundary Condition Organization

	7.3.4. Default Initial and Lateral Boundary Conditions

	7.3.5. Running the App for Different Dates

	7.3.6. Staging Initial Conditions Manually

	7.3.7. Coexistence of Multiple Files for the Same Date

	7.3.8. Best Practices for Conserving Disk Space and Keeping Files Safe

	8. Configuring a New Platform
	8.1. Installing NCEPLIBS-external

	8.2. Installing NCEPLIBS

	8.3. Building the UFS Short-Range Weather Application (UFS SRW App)

	8.4. Setting Up Your Python Environment

	8.5. Running Without a Workflow Manager: Generic Linux and macOS Platforms

	8.6. Running on a New Platform with Rocoto Workflow Manager

	8.7. Software/Operating System Requirements

	9. Workflow End-to-End (WE2E) Tests

	10. Graphics Generation
	10.1. Plotting output from one experiment

	10.2. Plotting differences from two experiments

	10.3. Submitting plotting scripts through a batch system

	11. FAQ
	11.1. How do I turn On/Off the Cycle-Independent Workflow Tasks

	11.2. How do I define an experiment name?

	11.3. How do I change the Suite Definition File (SDF)?

	11.4. How do I restart a DEAD task?

	11.5. How do I change the grid?

	12. Additional Rocoto Information
	12.1. rocotorun

	12.2. rocotostat

	12.3. rocotocheck

	12.4. rocotorewind

	12.5. rocotoboot

	13. Glossary

1. Introduction

The Unified Forecast System (UFS) is a community-based, coupled, comprehensive Earth modeling system.
It is designed to be the source system for NOAA’s operational numerical weather prediction applications
while enabling research, development, and contribution opportunities for the broader weather enterprise.
For more information about the UFS, visit the UFS Portal at https://ufscommunity.org/.

The UFS can be configured for multiple applications (see a complete list at
https://ufscommunity.org/science/aboutapps/). The configuration described here is the UFS Short-Range
Weather (SRW) Application, which targets predictions of atmospheric behavior on a limited spatial domain
and on time scales from less than an hour out to several days. The SRW Application v1.0 release includes a
prognostic atmospheric model, pre- and post-processing, and a community workflow for running the system
end-to-end, which are documented within the User’s Guide and supported through a community forum.
Future work will include expanding the capabilities of the application to include data assimilation
(DA) and a verification package (e.g. METplus) as part of the workflow. This documentation provides an
overview of the release components, a description of the supported capabilities, a quick start guide
for running the application, and information on where to find more information and obtain support.

The SRW App v1.0.0 citation is as follows and should be used when presenting results based on research
conducted with the App.

UFS Development Team. (2021, March 4). Unified Forecast System (UFS) Short-Range Weather (SRW) Application
(Version v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.4534994

1.1. Pre-processor Utilities and Initial Conditions

The SRW Application includes a number of pre-processing utilities to initialize and prepare the
model for integration. For the limited area model (LAM), it is necessary to first generate a
regional grid regional_esg_grid/make_hgrid along with orography orog and surface climatology sfc_climo_gen
files on that grid. There are additional utilities included to handle the correct number of halo shave
points and topography filtering filter_topo. The pre-processing software chgres_cube
is used to convert the raw external model data into initial and lateral boundary condition files in netCDF
format, needed as input to the FV3-LAM. Additional information about the UFS pre-processor utilities can
be found in the UFS_UTILS User’s Guide [https://noaa-emcufs-utils.readthedocs.io/en/ufs-v2.0.0/].

The SRW Application can be initialized from a range of operational initial condition files. It is
possible to initialize the model from GFS, NAM, RAP, and HRRR files in Gridded Binary v2 (GRIB2)
format and GFS in NEMSIO format for past dates. Please note, for GFS data, dates prior to 1 January 2018 may work but are
not guaranteed. Public archives of model data can be accessed through the National Centers for
Environmental Information [https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs]
(NCEI) or through the NOAA Operational Model Archive and Distribution System [https://nomads.ncep.noaa.gov/]
(NOMADS). Raw external model data may be pre-staged on disk by the user.

1.2. Forecast Model

The prognostic atmospheric model in the UFS SRW Application is the Finite-Volume Cubed-Sphere
(FV3) dynamical core configured with a Limited Area Model (LAM) capability [BAB+ed].
The dynamical core is the computational part of a model that solves the equations of fluid motion. A User’s
Guide for the UFS Weather Model is here [https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/].

Supported model resolutions in this release include a 3-, 13-, and 25-km predefined Contiguous
U.S. (CONUS) domain, all with 64 vertical levels. Preliminary tools for users to define their
own domain are also available in the release with full, formal support of these tools to be
provided in future releases. The Extended Schmidt Gnomonic (ESG) grid is used with the FV3-LAM,
which features relatively uniform grid cells across the entirety of the domain. Additional
information about the FV3 dynamical core can be found here [https://noaa-emc.github.io/FV3_Dycore_ufs-v2.0.0/html/index.html] and on the NOAA Geophysical
Fluid Dynamics Laboratory website [https://www.gfdl.noaa.gov/fv3/].

Interoperable atmospheric physics, along with the Noah Multi-parameterization (Noah MP)
Land Surface Model options, are supported through the Common Community Physics Package
(CCPP; described here [https://dtcenter.org/community-code/common-community-physics-package-ccpp]).
Atmospheric physics are a set of numerical methods describing small-scale processes such
as clouds, turbulence, radiation, and their interactions. There are two physics options
supported for the release. The first is an experimental physics suite being tested for use
in the future operational implementation of the Rapid Refresh Forecast System (RRFS) planned
for 2023-2024, and the second is an updated version of the physics suite used in the operational
Global Forecast System (GFS) v15. A scientific description of the CCPP parameterizations and
suites can be found in the CCPP Scientific Documentation [https://dtcenter.ucar.edu/GMTB/v5.0.0/sci_doc/index.html],
and CCPP technical aspects are described in the CCPP Technical Documentation [https://ccpp-techdoc.readthedocs.io/en/v5.0.0/]. The model namelist has many settings
beyond the physics options that can optimize various aspects of the model for use with each
of the supported suites.

The SRW App supports the use of both GRIB2 and NEMSIO input data. The UFS Weather Model
ingests initial and lateral boundary condition files produced by chgres_cube and outputs files in
NetCDF format on a specific projection (e.g., Lambert Conformal) in the horizontal and model
levels in the vertical.

1.3. Post-processor

The SRW Application is distributed with the Unified Post Processor (UPP) included in the
workflow as a way to convert the NetCDF output on the native model grid to GRIB2 format on
standard isobaric vertical coordinates. UPP can also be used to compute a variety of useful
diagnostic fields, as described in the UPP user’s guide [https://upp.readthedocs.io/en/upp-v9.0.0/].

Output from UPP can be used with visualization, plotting, and verification packages, or for
further downstream post-processing, e.g. statistical post-processing techniques.

1.4. Visualization Example

A Python script is provided to create basic visualization of the model output. The script
is designed to output graphics in PNG format for 14 standard meteorological variables
when using the pre-defined CONUS domain. In addition, a difference plotting script is included
to visually compare two runs for the same domain and resolution. These scripts are provided only
as an example for users familiar with Python, and may be used to do a visual check to verify
that the application is producing reasonable results.

The scripts are available in the regional_workflow repository [https://github.com/NOAA-EMC/regional_workflow/tree/release/public-v1/ush/Python]
under ush/Python. Usage information and instructions are described in
Chapter 10 and are also included at the top of the script.

1.5. Build System and Workflow

The SRW Application has a portable build system and a user-friendly, modular, and
expandable workflow framework.

An umbrella CMake-based build system is used for building the components necessary
for running the end-to-end SRW Application: the UFS Weather Model and the pre- and
post-processing software. Additional libraries (NCEPLIBS-external and NCEPLIBS) necessary
for the application are not included in the SRW Application build system, but are available
pre-built on pre-configured platforms. There is a small set of system libraries and utilities
that are assumed to be present on the target computer: the CMake build software, a Fortran,
C, and C++ compiler, and MPI library.

Once built, the provided experiment generator script can be used to create a Rocoto-based
workflow file that will run each task in the system (see Rocoto documentation [https://github.com/christopherwharrop/rocoto/wiki/Documentation]) in the proper sequence.
If Rocoto and/or a batch system is not present on the available platform, the individual
components can be run in a stand-alone, command line fashion with provided run scripts. The
generated namelist for the atmospheric model can be modified in order to vary settings such
as forecast starting and ending dates, forecast length hours, the CCPP physics suite,
integration time step, history file output frequency, and more. It also allows for configuration
of other elements of the workflow; for example, whether to run some or all of the pre-processing,
forecast model, and post-processing steps.

This SRW Application release has been tested on a variety of platforms widely used by
researchers, such as the NOAA Research and Development High-Performance Computing Systems
(RDHPCS), including Hera, Orion, and Jet; NOAA’s Weather and Climate Operational
Supercomputing System (WCOSS); the National Center for Atmospheric Research (NCAR) Cheyenne
system; NSSL’s HPC machine, Odin; the National Science Foundation Stampede2 system; and
generic Linux and macOS systems using Intel and GNU compilers. Four levels of support [https://github.com/ufs-community/ufs-srweather-app/wiki/Supported-Platforms-and-Compilers]
have been defined for the SRW Application, including pre-configured (level 1), configurable
(level 2), limited test platforms (level 3), and build only platforms (level 4). Each
level is further described below.

For the selected computational platforms that have been pre-configured (level 1), all the
required libraries for building the SRW Application are available in a central place. That
means bundled libraries (NCEPLIBS) and third-party libraries (NCEPLIBS-external) have both
been built. The SRW Application is expected to build and run out of the box on these
pre-configured platforms and users can proceed directly to the using the workflow, as
described in the Quick Start (Chapter 2).

A few additional computational platforms are considered configurable for the SRW
Application release. Configurable platforms (level 2) are platforms where all of
the required libraries for building the SRW Application are expected to install successfully,
but are not available in a central place. Applications and models are expected to build
and run once the required bundled libraries (NCEPLIBS) and third-party libraries (NCEPLIBS-external)
are built.

Limited-Test (level 3) and Build-Only (level 4) computational platforms are those in which
the developers have built the code but little or no pre-release testing has been conducted,
respectively. A complete description of the levels of support, along with a list of preconfigured
and configurable platforms can be found in the SRW Application wiki page [https://github.com/ufs-community/ufs-srweather-app/wiki/Supported-Platforms-and-Compilers].

1.6. User Support, Documentation, and Contributing Development

A forum-based, online support system [https://forums.ufscommunity.org] with topical sections
provides a centralized location for UFS users and developers to post questions and exchange
information. The forum complements the formal, written documentation, summarized here for ease of
use.

A list of available documentation is shown in Table 1.1.

Table 1.1 Centralized list of documentation

	Documentation

	Location

	UFS SRW Application v1.0
User’s Guide

	https://ufs-srweather-app.readthedocs.io/en/ufs-v1.0.0

	UFS_UTILS v2.0 User’s
Guide

	https://noaa-emcufs-utils.readthedocs.io/en/ufs-v2.0.0/

	UFS Weather Model v2.0
User’s Guide

	https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0

	NCEPLIBS Documentation

	https://github.com/NOAA-EMC/NCEPLIBS/wiki

	NCEPLIBS-external
Documentation

	https://github.com/NOAA-EMC/NCEPLIBS-external/wiki

	FV3 Documentation

	https://noaa-emc.github.io/FV3_Dycore_ufs-v2.0.0/html/index.html

	CCPP Scientific
Documentation

	https://dtcenter.ucar.edu/GMTB/v5.0.0/sci_doc/index.html

	CCPP Technical
Documentation

	https://ccpp-techdoc.readthedocs.io/en/v5.0.0/

	ESMF manual

	http://earthsystemmodeling.org/docs/release/ESMF_8_0_0/ESMF_usrdoc/

	Unified Post Processor

	https://upp.readthedocs.io/en/upp-v9.0.0/

The UFS community is encouraged to contribute to the development effort of all related
utilities, model code, and infrastructure. Issues can be posted in the GitHub repository
for the SRW Application or the relevant subcomponent to report bugs or to announce upcoming
contributions to the code base. For code to be accepted in the authoritative repositories,
the code management rules of each component (described in the User’s Guides listed in
Table 1.1 need to be followed.

1.7. Future Direction

Users can expect to see incremental improvements and additional capabilities in upcoming
releases of the SRW Application to enhance research opportunities and support operational
forecast implementations. Planned advancements include:

	A more extensive set of supported developmental physics suites.

	A larger number of pre-defined domains/resolutions and a fully supported capability to create a user-defined domain.

	Inclusion of data assimilation, cycling, and ensemble capabilities.

	A verification package (i.e., METplus) integrated into the workflow.

	Inclusion of stochastic perturbation techniques.

In addition to the above list, other improvements will be addressed in future releases.

1.8. How to Use This Document

This guide instructs both novice and experienced users on downloading,
building and running the SRW Application. Please post questions in the
UFS forum at https://forums.ufscommunity.org/.

Throughout the guide, this presentation style indicates shell
commands and options, code examples, etc.

Note

Variables presented as AaBbCc123 in this document typically refer to variables
in scripts, names of files and directories.

	BAB+ed

	T.L. Black, J.A. Abeles, B.T. Blake, D. Jovic, E. Rogers, X. Zhang, E.A. Aligo, L.C. Dawson, Y. Lin, E. Strobach, P.C. Shafran, and J.R. Carley. A limited area modeling capability for the finite-volume cubed-sphere (fv3) dynamical core. Monthly Weather Review, Submitted.

2. Workflow Quick Start

To build and run the out-of-the-box case of the UFS Short-Range Weather (SRW) Application the user
must get the source code for multiple components, including: the regional workflow, the UFS_UTILS
pre-processor utilities, the UFS Weather Model, and the Unified Post Processor (UPP). Once the UFS
SRW Application umbrella repository is cloned, obtaining the necessary external repositories is
simplified by the use of manage_externals. The out-of-the-box case uses a predefined 25-km
CONUS grid (RRFS_CONUS_25km), the GFS version 15.2 physics suite (FV3_GFS_v15p2 CCPP), and
FV3-based GFS raw external model data for initialization.

Note

The steps described in this chapter are applicable to preconfigured (Level 1) machines where
all of the required libraries for building community releases of UFS models and applications
are available in a central place (i.e. the bundled libraries (NCEPLIBS) and third-party
libraries (NCEPLIBS-external) have both been built). The Level 1 platforms are listed here [https://github.com/ufs-community/ufs-srweather-app/wiki/Supported-Platforms-and-Compilers].
For more information on compiling NCEPLIBS-external and NCEPLIBS, please refer to the
NCEPLIBS-external wiki [https://github.com/NOAA-EMC/NCEPLIBS-external/wiki].

2.1. Download the UFS SRW Application Code

The necessary source code is publicly available on GitHub. To clone the release branch of the repository:

git clone -b ufs-v1.0.0 https://github.com/ufs-community/ufs-srweather-app.git
cd ufs-srweather-app

Then, check out the submodules for the SRW application:

./manage_externals/checkout_externals

The checkout_externals script uses the configuration file Externals.cfg in the top level directory
and will clone the regional workflow, pre-processing utilities, UFS Weather Model, and UPP source code
into the appropriate directories under your regional_workflow and src directories.

2.2. Set up the Build Environment

Instructions for loading the proper modules and/or setting the correct environment variables can be
found in the env/ directory in files named build_<platform>_<compiler>.env.
The commands in these files can be directly copy-pasted to the command line or the file can be sourced.
You may need to modify certain variables such as the path to NCEP libraries for your individual platform,
or use setenv rather than export depending on your environment:

$ ls -l env/
 -rw-rw-r-- 1 user ral 466 Jan 21 10:09 build_cheyenne_intel.env
 -rw-rw-r-- 1 user ral 461 Jan 21 10:09 build_hera_intel.env
 -rw-rw-r-- 1 user ral 543 Jan 21 10:09 build_jet_intel.env

2.3. Build the Executables

Build the executables as follows:

mkdir build
cd build

Run cmake to set up the Makefile, then run make:

cmake .. -DCMAKE_INSTALL_PREFIX=..
make -j 4 >& build.out &

Output from the build will be in the ufs-srweather-app/build/build.out file.
When the build completes, you should see the forecast model executable NEMS.exe and eleven
pre- and post-processing executables in the ufs-srweather-app/bin directory which are
described in Table 4.2.

2.4. Generate the Workflow Experiment

Generating the workflow experiment requires three steps:

	Set experiment parameters in config.sh

	Set Python and other environment parameters

	Run the generate_FV3LAM_wflow.sh script

The first two steps depend on the platform being used and are described here for each Level 1 platform.

2.4.1. Set up config.sh file

The workflow requires a file called config.sh to specify the values of your experiment parameters.
Two example templates are provided: config.community.sh and config.nco.sh and can be found in
the ufs-srweather-app/regional_workflow/ush directory. The first file is a minimal example for
creating and running an experiment in the community mode (with RUN_ENVIR set to community),
while the second is an example of creating and running an experiment in the NCO (operational) mode
(with RUN_ENVIR set to nco). The community mode is recommended in most cases and will be
fully supported for this release while the operational mode will be more exclusively used by NOAA/NCEP
Central Operations (NCO) and those in the NOAA/NCEP/Environmental Modeling Center (EMC) working with
NCO on pre-implementation testing. Sample config.sh files are discussed in this section for Level 1 platforms.

Make a copy of config.community.sh to get started (under /path-to-ufs-srweather-app/regional_workflow/ush):

cd ../regional_workflow/ush
cp config.community.sh config.sh

Edit the config.sh file to set the machine you are running on to MACHINE, use an account you can charge for
ACCOUNT, and set the name of the experiment with EXPT_SUBDIR. If you have access to the NOAA HPSS from the
machine you are running on, those changes should be sufficient; however, if that is not the case (for example,
on Cheyenne), or if you have pre-staged the initialization data you would like to use, you will also want to set
USE_USER_STAGED_EXTRN_FILES="TRUE" and set the paths to the data for EXTRN_MDL_SOURCE_BASEDIR_ICS and
EXTRN_MDL_SOURCE_BASEDIR_LBCS.

At a minimum, the following parameters should be set for the machine you are using:

For Cheyenne:

MACHINE="cheyenne"
ACCOUNT="my_account"
EXPT_SUBDIR="my_expt_name"
USE_USER_STAGED_EXTRN_FILES="TRUE"
EXTRN_MDL_SOURCE_BASEDIR_ICS="/glade/p/ral/jntp/UFS_SRW_app/model_data/FV3GFS"
EXTRN_MDL_SOURCE_BASEDIR_LBCS="/glade/p/ral/jntp/UFS_SRW_app/model_data/FV3GFS"

For Hera:

MACHINE="hera"
ACCOUNT="my_account"
EXPT_SUBDIR="my_expt_name"

For Jet:

MACHINE="jet"
ACCOUNT="my_account"
EXPT_SUBDIR="my_expt_name"

For Orion:

MACHINE="orion"
ACCOUNT="my_account"
EXPT_SUBDIR="my_expt_name"

For Gaea:

MACHINE="gaea"
ACCOUNT="my_account"
EXPT_SUBDIR="my_expt_name"

For WCOSS, edit config.sh with these WCOSS-specific parameters, and use a valid WCOSS
project code for the account parameter:

MACHINE=”wcoss_cray” or MACHINE=”wcoss_dell_p3”
ACCOUNT="my_account"
EXPT_SUBDIR="my_expt_name"

2.4.2. Set up the Python and other Environment Parameters

Next, it is necessary to load the appropriate Python environment for the workflow.
The workflow requires Python 3, with the packages ‘PyYAML’, ‘Jinja2’, and ‘f90nml’ available.
This Python environment has already been set up on Level 1 platforms, and can be activated in
the following way (when in /path-to-ufs-srweather-app/regional_workflow/ush):

source ../../env/wflow_<platform>.env

2.4.3. Run the generate_FV3LAM_wflow.sh script

For all platforms, the workflow can then be generated with the command:

./generate_FV3LAM_wflow.sh

The generated workflow will be in $EXPTDIR, where EXPTDIR=${EXPT_BASEDIR}/${EXPT_SUBDIR}. A
log file called log.generate_FV3LAM_wflow is generated by this step and can also be found in
$EXPTDIR. The settings for these paths can be found in the output from the
./generate_FV3LAM_wflow.sh script.

2.5. Run the Workflow Using Rocoto

The information in this section assumes that Rocoto is available on the desired platform.
If Rocoto is not available, it is still possible to run the workflow using stand-alone scripts
described in Section 4.8.3. There are two ways you can run
the workflow with Rocoto using either the ./launch_FV3LAM_wflow.sh or by hand.

An environment variable may be set to navigate to the $EXPTDIR more easily. If the login
shell is bash, it can be set as follws:

export EXPTDIR=/path-to-experiment/directory

Or if the login shell is csh/tcsh, it can be set using:

setenv EXPTDIR /path-to-experiment/directory

To run Rocoto using the script:

cd $EXPTDIR
./launch_FV3LAM_wflow.sh

Once the workflow is launched with the launch_FV3LAM_wflow.sh script, a log file named
log.launch_FV3LAM_wflow will be created (or appended to it if it already exists) in EXPTDIR.

Or to manually call Rocoto:

First load the Rocoto module, depending on the platform used.

For Cheyenne:

module use -a /glade/p/ral/jntp/UFS_SRW_app/modules/
module load rocoto

For Hera or Jet:

module purge
module load rocoto

For Orion:

module purge
module load contrib rocoto

For Gaea:

module use /lustre/f2/pdata/esrl/gsd/contrib/modulefiles
module load rocoto/1.3.3

For WCOSS_DELL_P3:

module purge
module load lsf/10.1
module use /gpfs/dell3/usrx/local/dev/emc_rocoto/modulefiles/
module load ruby/2.5.1 rocoto/1.2.4

For WCOSS_DELL_P3:

module purge
module load xt-lsfhpc/9.1.3
module use -a /usrx/local/emc_rocoto/modulefiles
module load rocoto/1.2.4

Then manually call rocotorun to launch the tasks that have all dependencies satisfied
and rocotostat to monitor the progress:

cd $EXPTDIR
rocotorun -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10
rocotostat -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10

For automatic resubmission of the workflow (e.g., every 3 minutes), the following line can be added
to the user’s crontab (use crontab -e to edit the cron table).

*/3 * * * * cd /glade/p/ral/jntp/$USER/expt_dirs/test_CONUS_25km_GFSv15p2 && ./launch_FV3LAM_wflow.sh

Note

Currently cron is only available on the orion-login-1 node, so please use that node.

The workflow run is completed when all tasks have “SUCCEEDED”, and the rocotostat command will output the following:

CYCLE TASK JOBID STATE EXIT STATUS TRIES DURATION
==
201906150000 make_grid 4953154 SUCCEEDED 0 1 5.0
201906150000 make_orog 4953176 SUCCEEDED 0 1 26.0
201906150000 make_sfc_climo 4953179 SUCCEEDED 0 1 33.0
201906150000 get_extrn_ics 4953155 SUCCEEDED 0 1 2.0
201906150000 get_extrn_lbcs 4953156 SUCCEEDED 0 1 2.0
201906150000 make_ics 4953184 SUCCEEDED 0 1 16.0
201906150000 make_lbcs 4953185 SUCCEEDED 0 1 71.0
201906150000 run_fcst 4953196 SUCCEEDED 0 1 1035.0
201906150000 run_post_f000 4953244 SUCCEEDED 0 1 5.0
201906150000 run_post_f001 4953245 SUCCEEDED 0 1 4.0
...
201906150000 run_post_f048 4953381 SUCCEEDED 0 1 7.0

2.6. Plot the Output

Two python scripts are provided to generate plots from the FV3-LAM post-processed GRIB2 output. Information
on how to generate the graphics can be found in Chapter 10.

3. Code Repositories and Directory Structure

This chapter describes the code repositories that comprise the UFS SRW Application,
without describing any of the components in detail.

3.1. Hierarchical Repository Structure

The umbrella repository for the UFS SRW Application is named ufs-srweather-app and is
available on GitHub at https://github.com/ufs-community/ufs-srweather-app. An umbrella
repository is defined as a repository that houses external code, called “externals,” from
additional repositories. The UFS SRW Application includes the manage_externals tools
along with a configuration file called Externals.cfg, which describes the external
repositories associated with this umbrella repo (see Table 3.1).

Table 3.1 List of top-level repositories that comprise the UFS SRW Application.

	Repository Description

	Authoritative repository URL

	Umbrella repository for the UFS
Short-Range Weather Application

	https://github.com/ufs-community/ufs-srweather-app

	Repository for
the UFS Weather Model

	https://github.com/ufs-community/ufs-weather-model

	Repository for the regional
workflow

	https://github.com/NOAA-EMC/regional_workflow

	Repository for UFS utilities,
including pre-processing,
chgres_cube, and more

	https://github.com/NOAA-EMC/UFS_UTILS

	Repository for the Unified Post
Processor (UPP)

	https://github.com/NOAA-EMC/EMC_post

The UFS Weather Model contains a number of sub-repositories used by the model as
documented here [https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/CodeOverview.html].

Note that the prerequisite libraries (including NCEP Libraries and external libraries) are not
included in the UFS SRW Application repository. The source code for these components resides in
the repositories NCEPLIBS [https://github.com/NOAA-EMC/NCEPLIBS] and NCEPLIBS-external [https://github.com/NOAA-EMC/NCEPLIBS-external].

These external components are already built on the preconfigured platforms listed here [https://github.com/ufs-community/ufs-srweather-app/wiki/Supported-Platforms-and-Compilers].
However, they must be cloned and built on other platforms according to the instructions provided
in the wiki pages of those repositories: https://github.com/NOAA-EMC/NCEPLIBS/wiki and
https://github.com/NOAA-EMC/NCEPLIBS-external/wiki.

3.2. Directory Structure

The directory structure for the SRW Application is determined by the local_path settings in
the Externals.cfg file, which is in the directory where the umbrella repository has
been cloned. After manage_externals/checkout_externals is run, the specific GitHub repositories
that are described in Table 3.1 are cloned into the target
subdirectories shown below. The directories that will be created later by running the
scripts are presented in parentheses. Some directories have been removed for brevity.

ufs-srweather-app
├── (bin)
├── (build)
├── docs
│ └── UsersGuide
├── (include)
├── (lib)
├── manage_externals
├── regional_workflow
│ ├── docs
│ │ └── UsersGuide
│ ├── (fix)
│ ├── jobs
│ ├── modulefiles
│ ├── scripts
│ ├── tests
│ │ └── baseline_configs
│ └── ush
│ ├── Python
│ ├── rocoto
│ ├── templates
│ └── wrappers
├── (share)
└── src
 ├── EMC_post
 │ ├── parm
 │ └── sorc
 │ └── ncep_post.fd
 ├── UFS_UTILS
 │ ├── sorc
 │ │ ├── chgres_cube.fd
 │ │ ├── fre-nctools.fd
 | │ ├── grid_tools.fd
 │ │ ├── orog_mask_tools.fd
 │ │ └── sfc_climo_gen.fd
 │ └── ush
 └── ufs_weather_model
 └── FV3
 ├── atmos_cubed_sphere
 └── ccpp

3.2.1. Regional Workflow Sub-Directories

Under the regional_workflow directory shown in Section 3.2 there are
a number of sub-directories that are created when the regional workflow is cloned. The
contents of these sub-directories are described in Table 3.2.

Table 3.2 Sub-directories of the regional workflow.

	Directory Name

	Description

	docs

	Users’ Guide Documentation

	jobs

	J-job scripts launched by Rocoto

	modulefiles

	Files used to load modules needed for building and
running the workflow

	scripts

	Run scripts launched by the J-jobs

	tests

	Baseline experiment configuration

	ush

	Utility scripts used by the workflow

3.3. Experiment Directory Structure

When the generate_FV3LAM_wflow.sh script is run, the user-defined experimental directory
EXPTDIR=/path-to/ufs-srweather-app/../expt_dirs/${EXPT_SUBDIR} is created, where EXPT_SUBDIR
is specified in the config.sh file. The contents of the EXPTDIR directory, before the
workflow is run, is shown in Table 3.3.

Table 3.3 Files and sub-directory initially created in the experimental directory.

	File Name

	Description

	config.sh

	User-specified configuration file, see Section 4.5.2

	data_table

	Cycle-independent input file (empty)

	field_table

	Tracers in the forecast model [https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/InputsOutputs.html#field-table-file]

	FV3LAM_wflow.xml

	Rocoto XML file to run the workflow

	input.nml

	Namelist for the UFS Weather model [https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/InputsOutputs.html#namelist-file-input-nml]

	launch_FV3LAM_wflow.sh

	Symlink to the shell script of
ufs-srweather-app/regional_workflow/ush/launch_FV3LAM_wflow.sh
that can be used to (re)launch the Rocoto workflow.
Each time this script is called, it appends to a log
file named log.launch_FV3LAM_wflow.

	log.generate_FV3LAM_wflow

	Log of the output from the experiment generation script
generate_FV3LAM_wflow.sh

	nems.configure

	See NEMS configuration file [https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/InputsOutputs.html#nems-configure-file]

	suite_{CCPP}.xml

	CCPP suite definition file used by the forecast model

	var_defns.sh

	Shell script defining the experiment parameters. It contains all
of the primary parameters specified in the default and
user-specified configuration files plus many secondary parameters
that are derived from the primary ones by the experiment
generation script. This file is sourced by various other scripts
in order to make all the experiment variables available to these
scripts.

	YYYYMMDDHH

	Cycle directory (empty)

In addition, the community mode creates the fix_am and fix_lam directories in EXPTDIR.
The fix_lam directory is initially empty but will contain some fix (time-independent) files
after the grid, orography, and/or surface climatology generation tasks are run.

Table 3.4 Description of the fix directories

	Directory Name

	Description

	fix_am

	Directory containing the global fix (time-independent)
data files. The experiment generation script copies
these files from a machine-dependent system directory.

	fix_lam

	Directory containing the regional fix (time-independent)
data files that describe the regional grid, orography,
and various surface climatology fields as well as
symlinks to pre-generated files.

Once the workflow is launched with the launch_FV3LAM_wflow.sh script, a log file named
log.launch_FV3LAM_wflow will be created (or appended to it if it already exists) in EXPTDIR.
Once the make_grid, make_orog, and make_sfc_climo tasks and the get_extrn_ics
and get_extrn_lbc tasks for the YYYYMMDDHH cycle have completed successfully, new files and
sub-directories are created, as described in Table 3.5.

Table 3.5 New directories and files created when the workflow is launched.

	Directory/file Name

	Description

	YYYYMMDDHH

	This is updated when the first cycle-specific workflow tasks are
run, which are get_extrn_ics and get_extrn_lbcs (they are
launched simultaneously for each cycle in the experiment). We
refer to this as a “cycle directory”. Cycle directories are
created to contain cycle-specific files for each cycle that the
experiment runs. If DATE_FIRST_CYCL and DATE_LAST_CYCL
were different, and/or CYCL_HRS contained more than one
element in the config.sh file, then more than one cycle
directory would be created under the experiment directory.

	grid

	Directory generated by the make_grid task containing grid
files for the experiment

	log

	Contains log files generated by the overall workflow and its
various tasks. Look in these files to trace why a task may have
failed.

	orog

	Directory generated by the make_orog task containing the
orography files for the experiment

	sfc_climo

	Directory generated by the make_sfc_climo task containing the
surface climatology files for the experiment

	FV3LAM_wflow.db
FV3LAM_wflow_lock.db

	Database files that are generated when Rocoto is called (by the
launch script) to launch the workflow.

	log.launch_FV3LAM_wflow

	This is the log file to which the launch script
launch_FV3LAM_wflow.sh appends its output each time it is
called. Take a look at the last 30–50 lines of this file to check
the status of the workflow.

The output files for an experiment are described in Section 7.2.
The workflow tasks are described in Section 4.7.2).

4. Short-Range Weather Application Overview

The UFS Short-Range Weather Application (SRW App) is an umbrella repository that contains the tool
manage_externals to check out all of the components required for the application. Once the
build process is complete, all the files and executables necessary for a regional experiment are
located in the regional_workflow and bin directories, respectively, under the ufs-srweather-app directory.
Users can utilize the pre-defined domains or build their own domain (details provided in Chapter 6).
In either case, users must create/modify the case-specific (config.sh) and/or grid-specific configuration
files (set_predef_grid_params.sh). The overall procedure is shown in Figure 4.1,
with the scripts to generate and run the workflow shown in red. The steps are as follows:

	Clone the UFS Short Range Weather Application from GitHub.

	Check out the external repositories.

	Set up the build environment and build the regional workflow system using cmake/make.

	Optional: Add new grid information to the set_predef_grid_param.sh configuration file and update valid_param_vals.sh.

	Modify the case-specific config.sh configuration file.

	Load the python environment for the regional workflow

	Generate a regional workflow experiment.

	Run the regional workflow as needed.

Each step will be described in detail in the following sections.

[image: _images/FV3LAM_wflow_overall.png]
Fig. 4.1 Overall layout of the SRW App.

4.1. Download from GitHub

Retrieve the UFS Short Range Weather Application (SRW App) repository from GitHub and checkout the ufs-v1.0.0 tag:

git clone -b ufs-v1.0.0 https://github.com/ufs-community/ufs-srweather-app.git
cd ufs-srweather-app

The cloned repository contains the configuration files and sub-directories shown in
Table 4.1.

Table 4.1 Files and sub-directories of the ufs-srweather-app repository.

	File/directory Name

	Description

	CMakeLists.txt

	Main cmake file for SRW App

	Externals.cfg

	Tags of the GitHub repositories/branches for the
external repositories

	LICENSE.md

	CC0 license information

	README.md

	Quick start guide

	ufs_srweather_app_meta.h.in

	Meta information for SRW App which can be used by
other packages

	ufs_srweather_app.settings.in

	SRW App configuration summary

	env

	Contains build and workflow environment files

	docs

	Contains release notes, documentation, and Users’ Guide

	manage_externals

	Utility for checking out external repositories

	src

	Contains CMakeLists.txt; external repositories
will be cloned in this directory.

4.2. External Components

Check out the external repositories, including regional_workflow, ufs-weather-model, ufs_utils, and emc_post for the SRW App.

./manage_externals/checkout_externals

This step will use the configuration Externals.cfg file in the ufs-srweather-app directory to
clone the specific tags (version of codes) of the external repositories as listed in
Section 3.1.

4.3. Building the Executables for the Application

Before building the executables, the build environment must be set up for your specific platform.
Instructions for loading the proper modules and/or setting the correct environment variables
can be found in the env/ directory in files named build_<platform>_<compiler>.env. For the
most part, the commands in those files can be directly copied and pasted, but you may need to modify
certain variables such as the path to NCEP libraries for your specific platform. Here is a directory
listing example of these kinds of files:

$ ls -l env/
 -rw-rw-r-- 1 user ral 1228 Oct 9 10:09 build_cheyenne_intel.env
 -rw-rw-r-- 1 user ral 1134 Oct 9 10:09 build_hera_intel.env
 -rw-rw-r-- 1 user ral 1228 Oct 9 10:09 build_jet_intel.env
 ...

The following steps will build the pre-processing utilities, forecast model, and post-processor:

make dir
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=..
make -j 4 >& build.out &

where -DCMAKE_INSTALL_PREFIX specifies the location in which the bin, include, lib,
and share directories containing various components of the SRW App will be created, and its
recommended value .. denotes one directory up from the build directory. In the next line for
the make call, -j 4 indicates the build will run in parallel with 4 threads. If this step is successful, the
executables listed in Table 4.2 will be located in the
ufs-srweather-app/bin directory.

Table 4.2 Names and descriptions of the executables produced by the build step and used by the SRW App.

	Executable Name

	Description

	chgres_cube

	Reads in raw external model (global or regional) and surface climatology data
to create initial and lateral boundary conditions

	filter_topo

	Filters topography based on resolution

	global_equiv_resol

	Calculates a global, uniform, cubed-sphere equivalent resolution for the
regional Extended Schmidt Gnomonic (ESG) grid

	make_solo_mosaic

	Creates mosaic files with halos

	ncep_post

	Post-processor for the model output

	NEMS.exe

	UFS Weather Model executable

	orog

	Generates orography, land mask, and gravity wave drag files from fixed files

	regional_esg_grid

	Generates an ESG regional grid based on a user-defined namelist

	sfc_climo_gen

	Creates surface climatology fields from fixed files for use in chgres_cube

	shave

	Shaves the excess halo rows down to what is required for the LBCs in the
orography and grid files

	vcoord_gen

	Generates hybrid coordinate interface profiles

4.4. Grid-specific Configuration

Some SRW App parameters depend on the characteristics of the grid such as resolution and domain size.
These include ESG grid and Input configuration as well as the variables
related to the write component (quilting). The SRW App officially supports three different predefined
grids as shown in Table 4.3. Their names can be found under
valid_vals_PREDEF_GRID_NAME in the valid_param_vals script, and their grid-specific configuration
variables are specified in the set_predef_grid_params script. If users want to create a new domain,
they should put its name in the valid_param_vals script and the corresponding grid-specific
parameters in the set_predef_grid_params script. More information on the predefined and user-generated options
can be found in Chapter 6.

Table 4.3 Predefined grids in the SRW App.

	Grid Name

	Grid Type

	Quilting (write component)

	RRFS_CONUS_25km

	ESG grid

	lambert_conformal

	RRFS_CONUS_13km

	ESG grid

	lambert_conformal

	RRFS_CONUS_3km

	ESG grid

	lambert_conformal

4.5. Case-specific Configuration

4.5.1. Default configuration: config_defaults.sh

When generating a new experiment (described in detail in Section 4.7),
the config_defaults.sh file is read first and assigns default values to the experiment
parameters. Important configuration variables in the config_defaults.sh file are shown in
Table 4.4, with more documentation found in the file itself, and
in Chapter 5. Some of these default values are intentionally invalid in order
to ensure that the user assigns valid values in the user-specified configuration config.sh file.
Therefore, any settings provided in config.sh will override the default config_defaults.sh
settings. Note that there is usually no need for a user to modify the default configuration file.

Table 4.4 Configuration variables specified in the config_defaults.sh script.

	Group Name

	Configuration variables

	Experiment mode

	RUN_ENVIR

	Machine and queue

	MACHINE, ACCOUNT, SCHED, PARTITION_DEFAULT, QUEUE_DEFAULT,
PARTITION_HPSS, QUEUE_HPSS, PARTITION_FCST, QUEUE_FCST

	Cron

	USE_CRON_TO_RELAUNCH, CRON_RELAUNCH_INTVL_MNTS

	Experiment Dir.

	EXPT_BASEDIR, EXPT_SUBDIR

	NCO mode

	COMINgfs, STMP, NET, envir, RUN, PTMP

	Separator

	DOT_OR_USCORE

	File name

	EXPT_CONFIG_FN, RGNL_GRID_NML_FN, DATA_TABLE_FN,
DIAG_TABLE_FN, FIELD_TABLE_FN, FV3_NML_BASE_SUITE_FN,
FV3_NML_YALM_CONFIG_FN, FV3_NML_BASE_ENS_FN,
MODEL_CONFIG_FN, NEMS_CONFIG_FN, FV3_EXEC_FN,
WFLOW_XML_FN, GLOBAL_VAR_DEFNS_FN,
EXTRN_MDL_ICS_VAR_DEFNS_FN, EXTRN_MDL_LBCS_VAR_DEFNS_FN,
WFLOW_LAUNCH_SCRIPT_FN, WFLOW_LAUNCH_LOG_FN

	Forecast

	DATE_FIRST_CYCL, DATE_LAST_CYCL, CYCL_HRS, FCST_LEN_HRS

	IC/LBC

	EXTRN_MDL_NAME_ICS, EXTRN_MDL_NAME_LBCS,
LBC_SPEC_INTVL_HRS, FV3GFS_FILE_FMT_ICS,
FV3GFS_FILE_FMT_LBCS

	NOMADS

	NOMADS, NOMADS_file_type

	External model

	USE_USER_STAGED_EXTRN_FILES, EXTRN_MDL_SOURCE_BASEDRI_ICS,
EXTRN_MDL_FILES_ICS, EXTRN_MDL_SOURCE_BASEDIR_LBCS,
EXTRN_MDL_FILES_LBCS

	CCPP

	CCPP_PHYS_SUITE

	GRID

	GRID_GEN_METHOD

	ESG grid

	ESGgrid_LON_CTR, ESGgrid_LAT_CTR, ESGgrid_DELX,
ESGgrid_DELY, ESGgrid_NX, ESGgrid_NY,
ESGgrid_WIDE_HALO_WIDTH

	Input configuration

	DT_ATMOS, LAYOUT_X, LAYOUT_Y, BLOCKSIZE, QUILTING,
PRINT_ESMF, WRTCMP_write_groups,
WRTCMP_write_tasks_per_group, WRTCMP_output_grid,
WRTCMP_cen_lon, WRTCMP_cen_lat, WRTCMP_lon_lwr_left,
WRTCMP_lat_lwr_left, WRTCMP_lon_upr_rght,
WRTCMP_lat_upr_rght, WRTCMP_dlon, WRTCMP_dlat,
WRTCMP_stdlat1, WRTCMP_stdlat2, WRTCMP_nx, WRTCMP_ny,
WRTCMP_dx, WRTCMP_dy

	Pre-existing grid

	PREDEF_GRID_NAME, PREEXISTING_DIR_METHOD, VERBOSE

	Cycle-independent

	RUN_TASK_MAKE_GRID, GRID_DIR, RUN_TASK_MAKE_OROG,
OROG_DIR, RUN_TASK_MAKE_SFC_CLIMO, SFC_CLIMO_DIR

	Surface climatology

	SFC_CLIMO_FIELDS, FIXgsm, TOPO_DIR, SFC_CLIMO_INPUT_DIR,
FNGLAC, FNMXIC, FNTSFC, FNSNOC, FNZORC, FNAISC, FNSMCC,
FNMSKH, FIXgsm_FILES_TO_COPY_TO_FIXam,
FV3_NML_VARNAME_TO_FIXam_FILES_MAPPING,
FV3_NML_VARNAME_TO_SFC_CLIMO_FIELD_MAPPING,
CYCLEDIR_LINKS_TO_FIXam_FILES_MAPPING

	Workflow task

	MAKE_GRID_TN, MAKE_OROG_TN, MAKE_SFC_CLIMO_TN,
GET_EXTRN_ICS_TN, GET_EXTRN_LBCS_TN, MAKE_ICS_TN,
MAKE_LBCS_TN, RUN_FCST_TN, RUN_POST_TN

	NODE

	NNODES_MAKE_GRID, NNODES_MAKE_OROG, NNODES_MAKE_SFC_CLIMO,
NNODES_GET_EXTRN_ICS, NNODES_GET_EXTRN_LBCS,
NNODES_MAKE_ICS, NNODES_MAKE_LBCS, NNODES_RUN_FCST,
NNODES_RUN_POST

	MPI processes

	PPN_MAKE_GRID, PPN_MAKE_OROG, PPN_MAKE_SFC_CLIMO,
PPN_GET_EXTRN_ICS, PPN_GET_EXTRN_LBCS, PPN_MAKE_ICS,
PPN_MAKE_LBCS, PPN_RUN_FCST, PPN_RUN_POST

	Walltime

	WTIME_MAKE_GRID, WTIME_MAKE_OROG, WTIME_MAKE_SFC_CLIMO,
WTIME_GET_EXTRN_ICS, WTIME_GET_EXTRN_LBCS, WTIME_MAKE_ICS,
WTIME_MAKE_LBCS, WTIME_RUN_FCST, WTIME_RUN_POST

	Maximum attempt

	MAXTRIES_MAKE_GRID, MAXTRIES_MAKE_OROG,
MAXTRIES_MAKE_SFC_CLIMO, MAXTRIES_GET_EXTRN_ICS,
MAXTRIES_GET_EXTRN_LBCS, MAXTRIES_MAKE_ICS,
MAXTRIES_MAKE_LBCS, MAXTRIES_RUN_FCST, MAXTRIES_RUN_POST

	Post configuration

	USE_CUSTOM_POST_CONFIG_FILE, CUSTOM_POST_CONFIG_FP

	Running ensembles

	DO_ENSEMBLE, NUM_ENS_MEMBERS

	Stochastic physics

	DO_SHUM, DO_SPPT, DO_SKEB, SHUM_MAG, SHUM_LSCALE,
SHUM_TSCALE, SHUM_INT, SPPT_MAG, SPPT_LSCALE, SPPT_TSCALE,
SPPT_INT, SKEB_MAG, SKEB_LSCALE, SKEP_TSCALE, SKEB_INT,
SKEB_VDOF, USE_ZMTNBLCK

	Boundary blending

	HALO_BLEND

	FVCOM

	USE_FVCOM, FVCOM_DIR, FVCOM_FILE

	Compiler

	COMPILER

4.5.2. User-specific configuration: config.sh

Before generating an experiment, the user must create a config.sh file in the
ufs-srweather-app/regional_workflow/ush directory by copying either of the example
configuration files, config.community.sh for the community mode or config.nco.sh for
the NCO mode, or creating their own config.sh file. Note that the community mode is
recommended in most cases and will be fully supported for this release while the operational/NCO
mode will be more exclusively used by those at the NOAA/NCEP/Environmental Modeling Center (EMC)
and the NOAA/Global Systems Laboratory (GSL) working on pre-implementation testing.
Table 4.5 shows the configuration variables, along with their default
values in config_default.sh and the values defined in config.community.sh.

Note

The values of the configuration variables should be consistent with those in the
valid_param_vals script. In addition, various example configuration files can be
found in the regional_workflow/tests/baseline_configs directory.

Table 4.5 Configuration variables specified in the config.community.sh script.

	Parameter

	Default Value

	``config.community.sh`` Value

	MACHINE

	“BIG_COMPUTER”

	“hera”

	ACCOUNT

	“project_name”

	“an_account”

	EXPT_SUBDIR

	“”

	“test_CONUS_25km_GFSv15p2”

	VERBOSE

	“TRUE”

	“TRUE”

	RUN_ENVIR

	“nco”

	“community”

	PREEXISTING_DIR_METHOD

	“delete”

	“rename”

	PREDEF_GRID_NAME

	“”

	“RRFS_CONUS_25km”

	GRID_GEN_METHOD

	“ESGgrid”

	“ESGgrid”

	QUILTING

	“TRUE”

	“TRUE”

	CCPP_PHYS_SUITE

	“FV3_GSD_V0”

	“FV3_GFS_v15p2”

	FCST_LEN_HRS

	“24”

	“48”

	LBC_SPEC_INTVL_HRS

	“6”

	“6”

	DATE_FIRST_CYCL

	“YYYYMMDD”

	“20190615”

	DATE_LAST_CYCL

	“YYYYMMDD”

	“20190615”

	CYCL_HRS

	(“HH1” “HH2”)

	“00”

	EXTRN_MDL_NAME_ICS

	“FV3GFS”

	“FV3GFS”

	EXTRN_MDL_NAME_LBCS

	“FV3GFS”

	“FV3GFS”

	FV3GFS_FILE_FMT_ICS

	“nemsio”

	“grib2”

	FV3GFS_FILE_FMT_LBCS

	“nemsio”

	“grib2”

	WTIME_RUN_FCST

	“04:30:00”

	“01:00:00”

	USE_USER_STAGED_EXTRN_FILES

	“FALSE”

	“TRUE”

	EXTRN_MDL_SOURCE_BASE_DIR_ICS

	“”

	“/scratch2/BMC/det/UFS_SRW_app/v1p0/model_data/FV3GFS”

	EXTRN_MDL_FILES_ICS

	“”

	“gfs.pgrb2.0p25.f000”

	EXTRN_MDL_SOURCE_BASEDIR_LBCS

	“”

	“/scratch2/BMC/det/UFS_SRW_app/v1p0/model_data/FV3GFS”

	EXTRN_MDL_FILES_LBCS

	“”

	“gfs.pgrb2.0p25.f006”

4.6. Python Environment for Workflow

It is necessary to load the appropriate Python environment for the workflow.
The workflow requires Python 3, with the packages ‘PyYAML’, ‘Jinja2’, and ‘f90nml’ available.
This Python environment has already been set up on Level 1 platforms, and can be activated in
the following way:

source ../../env/wflow_<platform>.env

when in the ufs-srweather-app/regional_workflow/ush directory.

4.7. Generating a Regional Workflow Experiment

4.7.1. Steps to a Generate a New Experiment

Generating an experiment requires running

generate_FV3LAM_wflow.sh

in the ufs-srweather-app/regional_workflow/ush directory. This is the all-in-one script for users
to set up their experiment with ease. Figure 4.2 shows the flowchart
for generating an experiment. First, it sets up the configuration parameters by running
the setup.sh script. Second, it copies the time-independent (fix) files and other necessary
input files such as data_table, field_table, nems.configure, model_configure,
and the CCPP suite file from its location in the ufs-weather-model directory to the experiment directory (EXPTDIR).
Third, it copies the weather model executable (NEMS.exe) from the bin directory to EXPTDIR,
and creates the input namelist file input.nml based on the input.nml.FV3
file in the regional_workflow/ush/templates directory. Lastly, it creates the workflow XML file FV3LAM_wflow.xml
that is executed when running the experiment with the Rocoto workflow manager.

[image: _images/FV3regional_workflow_gen.png]
Fig. 4.2 Experiment generation description

The setup.sh script reads three other configuration scripts: (1) config_default.sh
(Section 4.5.1), (2) config.sh (Section 4.5.2),
and (3) set_predef_grid_params.sh (Section 4.4). Note that these three
scripts are read in order: config_default.sh, config.sh, then set_predef_grid_params.sh.
If a parameter is specified differently in these scripts, the file containing the last defined value will be used.

4.7.2. Description of Workflow Tasks

The flowchart of the workflow tasks that are specified in the FV3LAM_wflow.xml file are
illustrated in Figure 4.3, and each task is described in
Table 4.6. The first three pre-processing tasks; MAKE_GRID,
MAKE_OROG, and MAKE_SFC_CLIMO are optional. If the user stages pre-generated grid, orography, and
surface climatology fix files, these three tasks can be skipped by setting RUN_TASK_MAKE_GRID=”FALSE”,
RUN_TASK_MAKE_OROG=”FALSE”, and RUN_TASK_MAKE_SFC_CLIMO=”FALSE” in the regional_workflow/ush/config.sh
file before running the generate_FV3LAM_wflow.sh script. As shown in the figure, the FV3LAM_wflow.xml
file runs the specific j-job scripts in the prescribed order (regional_workflow/jobs/JREGIONAL_[task name])
when the launch_FV3LAM_wflow.sh is submitted. Each j-job task has its own source script named
exregional_[task name].sh in the regional_workflow/scripts directory. Two database files
FV3LAM_wflow.db and FV3LAM_wflow_lock.db are generated and updated by the Rocoto calls.
There is usually no need for users to modify these files. To relaunch the workflow from scratch,
delete these two *.db files and then call the launch script repeatedly for each task.

[image: _images/FV3LAM_wflow_flowchart.png]
Fig. 4.3 Flowchart of the workflow tasks

Table 4.6 Workflow tasks in SRW App

	Workflow Task

	Task Description

	make_grid

	Pre-processing task to generate regional grid files. Can
be run, at most, once per experiment.

	make_orog

	Pre-processing task to generate orography files. Can be
run, at most, once per experiment.

	make_sfc_climo

	Pre-processing task to generate surface climatology files.
Can be run, at most, once per experiment.

	get_extrn_ics

	Cycle-specific task to obtain external data for the
initial conditions

	get_extrn_lbcs

	Cycle-specific task to obtain external data for the
lateral boundary (LB) conditions

	make_ics

	Generate initial conditions from the external data

	make_lbcs

	Generate lateral boundary conditions from the external data

	run_fcst

	Run the forecast model (UFS weather model)

	run_post

	Run the post-processing tool (UPP)

4.8. Launch of Workflow

There are two ways to launch the workflow using Rocoto: (1) with the launch_FV3LAM_wflow.sh
script, and (2) manually calling the rocotorun command. Moreover, you can run the workflow
separately using stand-alone scripts.

An environment variable may be set to navigate to the $EXPTDIR more easily. If the login
shell is bash, it can be set as follws:

export EXPTDIR=/path-to-experiment/directory

Or if the login shell is csh/tcsh, it can be set using:

setenv EXPTDIR /path-to-experiment/directory

4.8.1. Launch with the launch_FV3LAM_wflow.sh script

To launch the launch_FV3LAM_wflow.sh script, simply call it without any arguments as follows:

cd ${EXPTDIR}
./launch_FV3LAM_wflow.sh

This script creates a log file named log.launch_FV3LAM_wflow in the EXPTDIR directory
(described in Section 3.3) or appends to it if it already exists.
You can check the contents of the end of the log file (e.g. last 30 lines) using the command:

tail -n 30 log.launch_FV3LAM_wflow

This command will print out the status of the workflow tasks as follows:

CYCLE TASK JOBID STATE EXIT STATUS TRIES DURATION
==
202006170000 make_grid druby://hfe01:33728 SUBMITTING - 0 0.0
202006170000 make_orog - - - - -
202006170000 make_sfc_climo - - - - -
202006170000 get_extrn_ics druby://hfe01:33728 SUBMITTING - 0 0.0
202006170000 get_extrn_lbcs druby://hfe01:33728 SUBMITTING - 0 0.0
202006170000 make_ics - - - - -
202006170000 make_lbcs - - - - -
202006170000 run_fcst - - - - -
202006170000 run_post_00 - - - - -
202006170000 run_post_01 - - - - -
202006170000 run_post_02 - - - - -
202006170000 run_post_03 - - - - -
202006170000 run_post_04 - - - - -
202006170000 run_post_05 - - - - -
202006170000 run_post_06 - - - - -

Summary of workflow status:
~~~~~~~~~~~~~~~~~~~~~~~~~~

  0 out of 1 cycles completed.
  Workflow status:  IN PROGRESS





Error messages for each task can be found in the task log files located in the EXPTDIR/log directory. In order to launch
more tasks in the workflow, you just need to call the launch script again as follows:

./launch_FV3LAM_wflow





If everything goes smoothly, you will eventually get the following workflow status table as follows:

CYCLE                    TASK                       JOBID        STATE   EXIT STATUS   TRIES  DURATION
======================================================================================================
202006170000        make_grid                     8854765    SUCCEEDED             0       1       6.0
202006170000        make_orog                     8854809    SUCCEEDED             0       1      27.0
202006170000   make_sfc_climo                     8854849    SUCCEEDED             0       1      36.0
202006170000    get_extrn_ics                     8854763    SUCCEEDED             0       1      54.0
202006170000   get_extrn_lbcs                     8854764    SUCCEEDED             0       1      61.0
202006170000         make_ics                     8854914    SUCCEEDED             0       1     119.0
202006170000        make_lbcs                     8854913    SUCCEEDED             0       1      98.0
202006170000         run_fcst                     8854992    SUCCEEDED             0       1     655.0
202006170000      run_post_00                     8855459    SUCCEEDED             0       1       6.0
202006170000      run_post_01                     8855460    SUCCEEDED             0       1       6.0
202006170000      run_post_02                     8855461    SUCCEEDED             0       1       6.0
202006170000      run_post_03                     8855462    SUCCEEDED             0       1       6.0
202006170000      run_post_04                     8855463    SUCCEEDED             0       1       6.0
202006170000      run_post_05                     8855464    SUCCEEDED             0       1       6.0
202006170000      run_post_06                     8855465    SUCCEEDED             0       1       6.0





If all the tasks complete successfully, the workflow status in the log file will include the word “SUCCESS.”
Otherwise, the workflow status will include the word “FAILURE.”




4.8.2. Manually launch by calling the rocotorun command

To launch the workflow manually, the rocoto module should be loaded:

module load rocoto





Then, launch the workflow as follows:

cd ${EXPTDIR}
rocotorun -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10





To check the status of the workflow, issue a rocotostat command as follows:

rocotostat -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10





Wait a few seconds and issue a second set of rocotorun and rocotostat commands:

rocotorun -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10
rocotostat -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10








4.8.3. Run the Workflow Using the Stand-alone Scripts

The regional workflow has the capability to be run using standalone shell scripts if the
Rocoto software is not available on a given platform. These scripts are located in the
ufs-srweather-app/regional_workflow/ush/wrappers directory. Each workflow task has
a wrapper script to set environment variables and run the job script.

Example batch-submit scripts for Hera (Slurm) and Cheyenne (PBS) are included: sq_job.sh
and qsub_job.sh, respectively. These examples set the build and run environment for Hera or Cheyenne
so that run-time libraries match the compiled libraries (i.e. netcdf, mpi). Users may either
modify the submit batch script as each task is submitted, or duplicate this batch wrapper
for their system settings for each task. Alternatively, some batch systems allow users to
specify most of the settings on the command line (with the sbatch or qsub command,
for example). This piece will be unique to your platform. The tasks run by the regional workflow
are shown in Table 4.7.  Tasks with the same stage level may
be run concurrently (no dependency).


Table 4.7 List of tasks in the regional workflow in the order that they are executed.
         Scripts with the same stage number may be run simultaneously. The number of
         processors and wall clock time is a good starting point for Cheyenne or Hera
         when running a 48-h forecast on the 25-km CONUS domain.







	Stage/
step

	Task Run Script

	Number of
Processors

	Wall clock time (H:MM)





	1

	run_get_ics.sh

	1

	0:20 (depends on HPSS vs
FTP vs staged-on-disk)



	1

	run_get_lbcs.sh

	1

	0:20 (depends on HPSS vs
FTP vs staged-on-disk)



	1

	run_make_grid.sh

	24

	0:20



	2

	run_make_orog.sh

	24

	0:20



	3

	run_make_sfc_climo.sh

	48

	0:20



	4

	run_make_ics.sh

	48

	0:30



	4

	run_make_lbcs.sh

	48

	0:30



	5

	run_fcst.sh

	48

	0:30



	6

	run_post.sh

	48

	0:25 (2 min per output
forecast hour)






The steps to run the standalone scripts are as follows:


	Clone and build the ufs-srweather-app following the steps
here [https://github.com/ufs-community/ufs-srweather-app/wiki/Getting-Started], or in
Sections 4.1 to Section 4.6 above.


	Generate an experiment configuration following the steps
here [https://github.com/ufs-community/ufs-srweather-app/wiki/Getting-Started], or in
Section 4.7 above.


	cd into the experiment directory


	Set the environment variable EXPTDIR for either csh and bash, respectively:

setenv EXPTDIR `pwd`
export EXPTDIR=`pwd`







	COPY the wrapper scripts from the regional_workflow directory into your experiment directory:

cp ufs-srweather-app/regional_workflow/ush/wrappers/* .







	RUN each of the listed scripts in order.  Scripts with the same stage number
may be run simultaneously.



	On most HPC systems, you will need to submit a batch job to run multi-processor jobs.


	On some HPC systems, you may be able to run the first two jobs (serial) on a login node/command-line


	Example scripts for Slurm (Hera) and PBS (Cheyenne) are provided.  These will need to be adapted to your system.


	This submit batch script is hard-coded per task, so will need to be modified or copied to run each task.











Check the batch script output file in your experiment directory for a “SUCCESS” message near the end of the file.









            

          

      

      

    

  

    
      
          
            
  
5. Configuring the Workflow: config.sh and config_defaults.sh

To create the experiment directory and workflow when running the SRW App, the user must create an experiment configuration file named config.sh.  This file contains experiment-specific information, such as dates, external model data, directories, and other relevant settings.  To help the user, two sample configuration files have been included in the regional_workflow repository’s ush directory: config.community.sh and config.nco.sh.  The first is for running experiments in community mode (RUN_ENVIR set to “community”; see below), and the second is for running experiments in “nco” mode (RUN_ENVIR set to “nco”).  Note that for this release, only “community” mode is supported.  These files can be used as the starting point from which to generate a variety of experiment configurations in which to run the SRW App.

There is an extensive list of experiment parameters that a user can set when configuring the experiment.  Not all of these need to be explicitly set by the user in config.sh.  In the case that a user does not define an entry in the config.sh script, either its value in config_defaults.sh will be used, or it will be reset depending on other parameters, e.g. the platform on which the experiment will be run (specified by MACHINE). Note that config_defaults.sh contains the full list of experiment parameters that a user may set in config.sh (i.e. the user cannot set parameters in config.sh that are not initialized in config_defaults.sh).

The following is a list of the parameters in the config_defaults.sh file.  For each parameter, the default value and a brief description is given.  In addition, any relevant information on features and settings supported or unsupported in this release is specified.


5.1. Platform Environment


	RUN_ENVIR: (Default: “nco”)
	This variable determines the mode that the workflow will run in.  The user can choose between two modes: “nco” and “community.”  The “nco” mode uses a directory structure that mimics what is used in operations at NOAA/NCEP Central Operations (NCO) and by those in the NOAA/NCEP/Environmental Modeling Center (EMC) working with NCO on pre-implementation testing.  Specifics of the conventions used in “nco” mode can be found in the following WCOSS Implementation Standards document:


NCEP Central Operations

WCOSS Implementation Standards

April 17, 2019

Version 10.2.0



Setting RUN_ENVIR to “community” will use the standard directory structure and variable naming convention and is recommended in most cases for users who are not planning to implement their code into operations at NCO.



	MACHINE: (Default: “BIG_COMPUTER”)
	The machine (a.k.a. platform) on which the workflow will run.  Currently supported platforms include “WCOSS_CRAY,” “WCOSS_DELL_P3,” “HERA,” “ORION,” “JET,” “ODIN,” “CHEYENNE,” “STAMPEDE,” “GAEA,” “MACOS,” and “LINUX.”



	ACCOUNT: (Default: “project_name”)
	The account under which to submit jobs to the queue on the specified MACHINE.



	WORKFLOW_MANAGER: (Default: “none”)
	The workflow manager to use (e.g. “ROCOTO”). This is set to “none” by default, but if the machine name is set to a platform that supports Rocoto, this will be overwritten and set to “ROCOTO.”



	SCHED: (Default: “”)
	The job scheduler to use (e.g. slurm) on the specified MACHINE.  Set this to an empty string in order for the experiment generation script to set it automatically depending on the machine the workflow is running on.  Currently, supported schedulers include “slurm,” “pbspro,” “lsf,” “lsfcray,” and “none”.



	PARTITION_DEFAULT: (Default: “”)
	If using the slurm job scheduler (i.e. if SCHED is set to “slurm”), the default partition to which to submit workflow tasks.  If a task does not have a specific variable that specifies the partition to which it will be submitted (e.g. PARTITION_HPSS, PARTITION_FCST; see below), it will be submitted to the partition specified by this variable.  If this is not set or is set to an empty string, it will be (re)set to a machine-dependent value.  This is not used if SCHED is not set to “slurm.”



	CLUSTERS_DEFAULT: (Default: “”)
	If using the slurm job scheduler (i.e. if SCHED is set to “slurm”), the default clusters to which to submit workflow tasks.  If a task does not have a specific variable that specifies the partition to which it will be submitted (e.g. CLUSTERS_HPSS, CLUSTERS_FCST; see below), it will be submitted to the clusters specified by this variable.  If this is not set or is set to an empty string, it will be (re)set to a machine-dependent value.  This is not used if SCHED is not set to “slurm.”



	QUEUE_DEFAULT: (Default: “”)
	The default queue or QOS (if using the slurm job scheduler, where QOS is Quality of Service) to which workflow tasks are submitted.  If a task does not have a specific variable that specifies the queue to which it will be submitted (e.g. QUEUE_HPSS, QUEUE_FCST; see below), it will be submitted to the queue specified by this variable.  If this is not set or is set to an empty string, it will be (re)set to a machine-dependent value.



	PARTITION_HPSS: (Default: “”)
	If using the slurm job scheduler (i.e. if SCHED is set to “slurm”), the partition to which the tasks that get or create links to external model files [which are needed to generate initial conditions (ICs) and lateral boundary conditions (LBCs)] are submitted.  If this is not set or is set to an empty string, it will be (re)set to a machine-dependent value.  This is not used if SCHED is not set to “slurm.”



	CLUSTERS_HPSS: (Default: “”)
	If using the slurm job scheduler (i.e. if SCHED is set to “slurm”), the clusters to which the tasks that get or create links to external model files [which are needed to generate initial conditions (ICs) and lateral boundary conditions (LBCs)] are submitted.  If this is not set or is set to an empty string, it will be (re)set to a machine-dependent value.  This is not used if SCHED is not set to “slurm.”



	QUEUE_HPSS: (Default: “”)
	The queue or QOS to which the tasks that get or create links to external model files are submitted.  If this is not set or is set to an empty string, it will be (re)set to a machine-dependent value.



	PARTITION_FCST: (Default: “”)
	If using the slurm job scheduler (i.e. if SCHED is set to “slurm”), the partition to which the task that runs forecasts is submitted.  If this is not set or set to an empty string, it will be (re)set to a machine-dependent value.  This is not used if SCHED is not set to “slurm.”



	CLUSTERS_FCST: (Default: “”)
	If using the slurm job scheduler (i.e. if SCHED is set to “slurm”), the clusters to which the task that runs forecasts is submitted.  If this is not set or set to an empty string, it will be (re)set to a machine-dependent value.  This is not used if SCHED is not set to “slurm.”



	QUEUE_FCST: (Default: “”)
	The queue or QOS to which the task that runs a forecast is submitted.  If this is not set or set to an empty string, it will be (re)set to a machine-dependent value.








5.2. Parameters for Running Without a Workflow Manager

These settings control run commands for platforms without a workflow manager.  Values will be ignored unless WORKFLOW_MANAGER="none".


	RUN_CMD_UTILS: (Default: “mpirun -np 1”)
	The run command for pre-processing utilities (shave, orog, sfc_climo_gen, etc.).  This can be left blank for smaller domains, in which case the executables will run without MPI.



	RUN_CMD_FCST: (Default: “mpirun -np ${PE_MEMBER01}”)
	The run command for the model forecast step. This will be appended to the end of the variable definitions file (“var_defns.sh”).



	RUN_CMD_POST: (Default: “mpirun -np 1”)
	The run command for post-processing (UPP). Can be left blank for smaller domains, in which case UPP will run without MPI.








5.3. Cron-Associated Parameters


	USE_CRON_TO_RELAUNCH: (Default: “FALSE”)
	Flag that determines whether or not a line is added to the user’s cron table that calls the experiment launch script every CRON_RELAUNCH_INTVL_MNTS minutes.



	CRON_RELAUNCH_INTVL_MNTS: (Default: “03”)
	The interval (in minutes) between successive calls of the experiment launch script by a cron job to (re)launch the experiment (so that the workflow for the experiment kicks off where it left off).  This is used only if USE_CRON_TO_RELAUNCH is set to “TRUE”.








5.4. Directory Parameters


	EXPT_BASEDIR: (Default: “”)
	The base directory in which the experiment directory will be created.  If this is not specified or if it is set to an empty string, it will default to ${HOMErrfs}/../../expt_dirs, where ${HOMErrfs} contains the full path to the regional_workflow directory.



	EXPT_SUBDIR: (Default: “”)
	The name that the experiment directory (without the full path) will have.  The full path to the experiment directory, which will be contained in the variable EXPTDIR, will be:

EXPTDIR="${EXPT_BASEDIR}/${EXPT_SUBDIR}"





This parameter cannot be left as a null string.








5.5. NCO Mode Parameters

These variables apply only when using NCO mode (i.e. when RUN_ENVIR is set to “nco”).


	COMINgfs: (Default: “/base/path/of/directory/containing/gfs/input/files”)
	The beginning portion of the directory which contains files generated by the external model that the initial and lateral boundary condition generation tasks need in order to create initial and boundary condition files for a given cycle on the native FV3-LAM grid.  For a cycle that starts on the date specified by the variable YYYYMMDD (consisting of the 4-digit year followed by the 2-digit month followed by the 2-digit day of the month) and hour specified by the variable HH (consisting of the 2-digit hour-of-day), the directory in which the workflow will look for the external model files is:

$COMINgfs/gfs.$yyyymmdd/$hh







	STMP: (Default: “/base/path/of/directory/containing/model/input/and/raw/output/files”)
	The beginning portion of the directory that will contain cycle-dependent model input files, symlinks to cycle-independent input files, and raw (i.e. before post-processing) forecast output files for a given cycle.  For a cycle that starts on the date specified by YYYYMMDD and hour specified by HH (where YYYYMMDD and HH are as described above) [so that the cycle date (cdate) is given by cdate="${YYYYMMDD}${HH}"], the directory in which the aforementioned files will be located is:

$STMP/tmpnwprd/$RUN/$cdate







	NET, envir, RUN:
	Variables used in forming the path to the directory that will contain the output files from the post-processor (UPP) for a given cycle (see definition of PTMP below).  These are defined in the WCOSS Implementation Standards document as follows:


	NET: (Default: “rrfs”)
	Model name (first level of com directory structure)



	envir: (Default: “para”)
	Set to “test” during the initial testing phase, “para” when running in parallel (on a schedule), and “prod” in production.



	RUN: (Default: “experiment_name”)
	Name of model run (third level of com directory structure).







	PTMP: (Default: “/base/path/of/directory/containing/postprocessed/output/files”)
	The beginning portion of the directory that will contain the output files from the post-processor (UPP) for a given cycle.  For a cycle that starts on the date specified by YYYYMMDD and hour specified by HH (where YYYYMMDD and HH are as described above), the directory in which the UPP output files will be placed will be:

$PTMP/com/$NET/$envir/$RUN.$yyyymmdd/$hh












5.6. Pre-Processing File Separator Parameters


	DOT_OR_USCORE: (Default: “_”)
	This variable sets the separator character(s) to use in the names of the grid, mosaic, and orography fixed files.  Ideally, the same separator should be used in the names of these fixed files as the surface climatology fixed files.








5.7. File Name Parameters


	EXPT_CONFIG_FN: (Default: “config.sh”)
	Name of the user-specified configuration file for the forecast experiment.



	RGNL_GRID_NML_FN: (Default: “regional_grid.nml”)
	Name of the file containing Fortran namelist settings for the code that generates an “ESGgrid” type of regional grid.



	FV3_NML_BASE_SUITE_FN: (Default: “input.nml.FV3”)
	Name of the Fortran namelist file containing the forecast model’s base suite namelist, i.e. the portion of the namelist that is common to all physics suites.



	FV3_NML_YAML_CONFIG_FN: (Default: “FV3.input.yml”)
	Name of YAML configuration file containing the forecast model’s namelist settings for various physics suites.



	DIAG_TABLE_FN: (Default: “diag_table”)
	Name of the file that specifies the fields that the forecast model will output.



	FIELD_TABLE_FN: (Default: “field_table”)
	Name of the file that specifies the tracers that the forecast model will read in from the IC/LBC files.



	DATA_TABLE_FN: (Default: “data_table”)
	The name of the file containing the data table read in by the forecast model.



	MODEL_CONFIG_FN: (Default: “model_configure”)
	The name of the file containing settings and configurations for the NUOPC/ESMF component.



	NEMS_CONFIG_FN: (Default: “nems.configure”)
	The name of the file containing information about the various NEMS components and their run sequence.



	FV3_EXEC_FN: (Default: “NEMS.exe”)
	Name of the forecast model executable in the executables directory (EXECDIR; set during experiment generation).



	WFLOW_XML_FN: (Default: “FV3LAM_wflow.xml”)
	Name of the Rocoto workflow XML file that the experiment generation script creates and that defines the workflow for the experiment.



	GLOBAL_VAR_DEFNS_FN: (Default: “var_defns.sh”)
	Name of the file (a shell script) containing the definitions of the primary experiment variables (parameters) defined in this default configuration script and in config.sh as well as secondary experiment variables generated by the experiment generation script.  This file is sourced by many scripts (e.g. the J-job scripts corresponding to each workflow task) in order to make all the experiment variables available in those scripts.



	EXTRN_MDL_ICS_VAR_DEFNS_FN: (Default: “extrn_mdl_ics_var_defns.sh”)
	Name of the file (a shell script) containing the definitions of variables associated with the external model from which ICs are generated.  This file is created by the GET_EXTRN_ICS_TN task because the values of the variables it contains are not known before this task runs.  The file is then sourced by the MAKE_ICS_TN task.



	EXTRN_MDL_LBCS_VAR_DEFNS_FN: (Default: “extrn_mdl_lbcs_var_defns.sh”)
	Name of the file (a shell script) containing the definitions of variables associated with the external model from which LBCs are generated.  This file is created by the GET_EXTRN_LBCS_TN task because the values of the variables it contains are not known before this task runs.  The file is then sourced by the MAKE_ICS_TN task.



	WFLOW_LAUNCH_SCRIPT_FN: (Default: “launch_FV3LAM_wflow.sh”)
	Name of the script that can be used to (re)launch the experiment’s Rocoto workflow.



	WFLOW_LAUNCH_LOG_FN: (Default: “log.launch_FV3LAM_wflow”)
	Name of the log file that contains the output from successive calls to the workflow launch script (WFLOW_LAUNCH_SCRIPT_FN).








5.8. Foreast Parameters


	DATE_FIRST_CYCL: (Default: “YYYYMMDD”)
	Starting date of the first forecast in the set of forecasts to run.  Format is “YYYYMMDD”.  Note that this does not include the hour-of-day.



	DATE_LAST_CYCL: (Default: “YYYYMMDD”)
	Starting date of the last forecast in the set of forecasts to run.  Format is “YYYYMMDD”.  Note that this does not include the hour-of-day.



	CYCL_HRS: (Default: ( “HH1” “HH2” ))
	An array containing the hours of the day at which to launch forecasts.  Forecasts are launched at these hours on each day from DATE_FIRST_CYCL to DATE_LAST_CYCL, inclusive.  Each element of this array must be a two-digit string representing an integer that is less than or equal to 23, e.g. “00”, “03”, “12”, “23”.



	FCST_LEN_HRS: (Default: “24”)
	The length of each forecast, in integer hours.








5.9. Initial and Lateral Boundary Condition Generation Parameters


	EXTRN_MDL_NAME_ICS: (Default: “FV3GFS”)
	The name of the external model that will provide fields from which initial condition (IC) files, surface files, and 0-th hour boundary condition files will be generated for input into the forecast model.



	EXTRN_MDL_NAME_LBCS: (Default: “FV3GFS”)
	The name of the external model that will provide fields from which lateral boundary condition (LBC) files (except for the 0-th hour LBC file) will be generated for input into the forecast model.



	LBC_SPEC_INTVL_HRS: (Default: “6”)
	The interval (in integer hours) at which LBC files will be generated, referred to as the boundary specification interval.  Note that the model specified in EXTRN_MDL_NAME_LBCS must have data available at a frequency greater than or equal to that implied by LBC_SPEC_INTVL_HRS.  For example, if LBC_SPEC_INTVL_HRS is set to 6, then the model must have data available at least every 6 hours.  It is up to the user to ensure that this is the case.



	FV3GFS_FILE_FMT_ICS: (Default: “nemsio”)
	If using the FV3GFS model as the source of the ICs (i.e. if EXTRN_MDL_NAME_ICS is set to “FV3GFS”), this variable specifies the format of the model files to use when generating the ICs.



	FV3GFS_FILE_FMT_LBCS: (Default: “nemsio”)
	If using the FV3GFS model as the source of the LBCs (i.e. if EXTRN_MDL_NAME_LBCS is set to “FV3GFS”), this variable specifies the format of the model files to use when generating the LBCs.








5.10. User-Staged External Model Directory and File Parameters


	USE_USER_STAGED_EXTRN_FILES: (Default: “False”)
	Flag that determines whether or not the workflow will look for the external model files needed for generating ICs and LBCs in user-specified directories (as opposed to fetching them from mass storage like NOAA HPSS).



	EXTRN_MDL_SOURCE_BASEDIR_ICS: (Default: “/base/dir/containing/user/staged/extrn/mdl/files/for/ICs”)
	Directory in which to look for external model files for generating ICs. If USE_USER_STAGED_EXTRN_FILES is set to “TRUE”, the workflow looks in this directory (specifically, in a subdirectory under this directory named “YYYYMMDDHH” consisting of the starting date and cycle hour of the forecast, where YYYY is the 4-digit year, MM the 2-digit month, DD the 2-digit day of the month, and HH the 2-digit hour of the day) for the external model files specified by the array EXTRN_MDL_FILES_ICS (these files will be used to generate the ICs on the native FV3-LAM grid).  This variable is not used if USE_USER_STAGED_EXTRN_FILES is set to “FALSE”.



	EXTRN_MDL_FILES_ICS: (Default: “ICS_file1” “ICS_file2” “…”)
	Array containing the names of the files to search for in the directory specified by EXTRN_MDL_SOURCE_BASEDIR_ICS.  This variable is not used if USE_USER_STAGED_EXTRN_FILES is set to “FALSE”.



	EXTRN_MDL_SOURCE_BASEDIR_LBCS: (Default: “/base/dir/containing/user/staged/extrn/mdl/files/for/ICs”)
	Analogous to EXTRN_MDL_SOURCE_BASEDIR_ICS but for LBCs instead of ICs.



	EXTRN_MDL_FILES_LBCS: (Default: ” “LBCS_file1” “LBCS_file2” “…”)
	Analogous to EXTRN_MDL_FILES_ICS but for LBCs instead of ICs.








5.11. CCPP Parameter


	CCPP_PHYS_SUITE: (Default: “FV3_GFS_v15p2”)
	The CCPP (Common Community Physics Package) physics suite to use for the forecast(s).  The choice of physics suite determines the forecast model’s namelist file, the diagnostics table file, the field table file, and the XML physics suite definition file that are staged in the experiment directory or the cycle directories under it.  Current supported settings for this parameter are “FV3_GFS_v15p2” and “FV3_RRFS_v1alpha”.








5.12. Grid Generation Parameters


	GRID_GEN_METHOD: (Default: “”)
	This variable specifies the method to use to generate a regional grid in the horizontal.  The only supported value of this parameter is “ESGgrid”, in which case the Extended Schmidt Gnomonic grid generation method developed by Jim Purser(1) of EMC will be used.





(1)Purser, R. J., D. Jovic, G. Ketefian, T. Black, J. Beck, J. Dong, and J. Carley, 2020: The Extended Schmidt Gnomonic Grid for Regional Applications. Unified Forecast System (UFS) Users’ Workshop. July 27-29, 2020.


Note


	If the experiment is using one of the predefined grids (i.e. if PREDEF_GRID_NAME is set to the name of one of the valid predefined grids), then GRID_GEN_METHOD will be reset to the value of GRID_GEN_METHOD for that grid.  This will happen regardless of whether or not GRID_GEN_METHOD is assigned a value in the user-specified experiment configuration file, i.e. any value it may be assigned in the experiment configuration file will be overwritten.


	If the experiment is not using one of the predefined grids (i.e. if PREDEF_GRID_NAME is set to a null string), then GRID_GEN_METHOD must be set in the experiment configuration file.  Otherwise, it will remain set to a null string, and the experiment generation will fail because the generation scripts check to ensure that it is set to a non-empty string before creating the experiment directory.






The following parameters must be set if using the “ESGgrid” method of generating a regional grid (i.e. for GRID_GEN_METHOD set to “ESGgrid”).


	ESGgrid_LON_CTR: (Default: “”)
	The longitude of the center of the grid (in degrees).



	ESGgrid_LAT_CTR: (Default: “”)
	The latitude of the center of the grid (in degrees).



	ESGgrid_DELX: (Default: “”)
	The cell size in the zonal direction of the regional grid (in meters).



	ESGgrid_DELY: (Default: “”)
	The cell size in the meridional direction of the regional grid (in meters).



	ESGgrid_NX: (Default: “”)
	The number of cells in the zonal direction on the regional grid.



	ESGgrid_NY: (Default: “”)
	The number of cells in the meridional direction on the regional grid.



	ESGgrid_WIDE_HALO_WIDTH: (Default: “”)
	The width (in units of number of grid cells) of the halo to add around the regional grid before shaving the halo down to the width(s) expected by the forecast model.





In order to generate grid files containing halos that are 3-cell and 4-cell wide and orography files with halos that are 0-cell and 3-cell wide (all of which are required as inputs to the forecast model), the grid and orography tasks first create files with halos around the regional domain of width ESGgrid_WIDE_HALO_WIDTH cells.  These are first stored in files.  The files are then read in and “shaved” down to obtain grid files with 3-cell-wide and 4-cell-wide halos and orography files with 0-cell-wide (i.e. no halo) and 3-cell-wide halos.  For this reason, we refer to the original halo that then gets shaved down as the “wide” halo, i.e. because it is wider than the 0-cell-wide, 3-cell-wide, and 4-cell-wide halos that we will eventually end up with.  Note that the grid and orography files with the wide halo are only needed as intermediates in generating the files with 0-cell-, 3-cell-, and 4-cell-wide halos; they are not needed by the forecast model.




5.13. Computational Forecast Parameters


	DT_ATMOS: (Default: “”)
	The main forecast model integration time step.  As described in the forecast model documentation, “It corresponds to the frequency with which the top level routine in the dynamics is called as well as the frequency with which the physics is called.”



	LAYOUT_X, LAYOUT_Y: (Default: “”)
	The number of MPI tasks (processes) to use in the two horizontal directions (x and y) of the regional grid when running the forecast model.



	BLOCKSIZE: (Default: “”)
	The amount of data that is passed into the cache at a time.





Here, we set these parameters to null strings. This is so that, for any one of these parameters:


	If the experiment is using a predefined grid and the user sets the parameter in the user-specified experiment configuration file (EXPT_CONFIG_FN), that value will be used in the forecast(s). Otherwise, the default value of the parameter for that predefined grid will be used.


	If the experiment is not using a predefined grid (i.e. it is using a custom grid whose parameters are specified in the experiment configuration file), then the user must specify a value for the parameter in that configuration file.  Otherwise, the parameter will remain set to a null string, and the experiment generation will fail, because the generation scripts check to ensure that all the parameters defined in this section are set to non-empty strings before creating the experiment directory.







5.14. Write-Component (Quilting) Parameters


	QUILTING: (Default: “TRUE”)
	Flag that determines whether or not to use the write-component for writing forecast output files to disk.  If set to “TRUE”, the forecast model will output files named dynf$HHH.nc and phyf$HHH.nc (where HHH is the 3-hour output forecast hour) containing dynamics and physics fields, respectively, on the write-component grid (the regridding from the native FV3-LAM grid to the write-component grid is done by the forecast model).  If QUILTING is set to “FALSE”, then the output file names are fv3_history.nc and fv3_history2d.nc and contain fields on the native grid.  Note that if QUILTING is set to “FALSE”, then the RUN_POST_TN (meta)task cannot be run because the Unified Post Processor (UPP) code that this task calls cannot process fields on the native grid.  In that case, the RUN_POST_TN (meta)task will be automatically removed from the Rocoto workflow XML.



	PRINT_ESMF: (Default: “FALSE”)
	Flag for whether or not to output extra (debugging) information from ESMF routines.  Must be “TRUE” or “FALSE”.  Note that the write-component uses ESMF library routines to interpolate from the native forecast model grid to the user-specified output grid (which is defined in the model configuration file (model_configure) in the forecast run directory).



	WRTCMP_write_groups: (Default: “1”)
	The number of write groups (i.e. groups of MPI tasks) to use in the write-component.



	WRTCMP_write_tasks_per_group: (Default: “20”)
	The number of MPI tasks to allocate for each write group.








5.15. Predefined Grid Parameters


	PREDEF_GRID_NAME: (Default: “”)
	This parameter specifies the name of a predefined regional grid.






Note


	If PREDEF_GRID_NAME is set to a valid predefined grid name, the grid generation method GRID_GEN_METHOD, the (native) grid parameters, and the write-component grid parameters are set to predefined values for the specified grid, overwriting any settings of these parameters in the user-specified experiment configuration file (config.sh).  In addition, if the time step DT_ATMOS and the computational parameters LAYOUT_X, LAYOUT_Y, and BLOCKSIZE are not specified in that configuration file, they are also set to predefined values for the specified grid.


	If PREDEF_GRID_NAME is set to an empty string, it implies the user is providing the native grid parameters in the user-specified experiment configuration file (EXPT_CONFIG_FN).  In this case, the grid generation method GRID_GEN_METHOD, the native grid parameters, and the write-component grid parameters as well as the main time step (DT_ATMOS) and the computational parameters LAYOUT_X, LAYOUT_Y, and BLOCKSIZE must be set in that configuration file.






Setting PREDEF_GRID_NAME provides a convenient method of specifying a commonly used set of grid-dependent parameters.  The predefined grid parameters are specified in the script

ush/set_predef_grid_params.sh





Currently supported PREDEF_GRID_NAME options are “RRFS_CONUS_25km,” “RRFS_CONUS_13km,” and “RRFS_CONUS_3km.”




5.16. Pre-existing Directory Parameter


	PREEXISTING_DIR_METHOD: (Default: “delete”)
	This variable determines the method to deal with pre-existing directories [e.g ones generated by previous calls to the experiment generation script using the same experiment name (EXPT_SUBDIR) as the current experiment].  This variable must be set to one of “delete”, “rename”, and “quit”.  The resulting behavior for each of these values is as follows:


	“delete”: The preexisting directory is deleted and a new directory (having the same name as the original preexisting directory) is created.


	“rename”: The preexisting directory is renamed and a new directory (having the same name as the original pre-existing directory) is created.  The new name of the preexisting directory consists of its original name and the suffix “_oldNNN”, where NNN is a 3-digit integer chosen to make the new name unique.


	“quit”: The preexisting directory is left unchanged, but execution of the currently running script is terminated.  In this case, the preexisting directory must be dealt with manually before rerunning the script.











5.17. Verbose Parameter


	VERBOSE: (Default: “TRUE”)
	This is a flag that determines whether or not the experiment generation and workflow task scripts print out extra informational messages.








5.18. Pre-Processing Parameters

These parameters set flags (and related directories) that determine whether the grid, orography, and/or surface climatology file generation tasks should be run.  Note that these are all cycle-independent tasks, i.e. if they are to be run, they do so only once at the beginning of the workflow before any cycles are run.


	RUN_TASK_MAKE_GRID: (Default: “TRUE”)
	Flag that determines whether the grid file generation task (MAKE_GRID_TN) is to be run. If this is set to “TRUE”, the grid generation task is run and new grid  files are generated.  If it is set to “FALSE”, then the scripts look for pre-generated grid files in the directory specified by GRID_DIR (see below).



	GRID_DIR: (Default: “/path/to/pregenerated/grid/files”)
	The directory in which to look for pre-generated grid files if RUN_TASK_MAKE_GRID is set to “FALSE”.



	RUN_TASK_MAKE_OROG: (Default: “TRUE”)
	Same as RUN_TASK_MAKE_GRID but for the orography generation task (MAKE_OROG_TN).



	OROG_DIR: (Default: “/path/to/pregenerated/orog/files”)
	Same as GRID_DIR but for the orography generation task.



	RUN_TASK_MAKE_SFC_CLIMO: (Default: “TRUE”)
	Same as RUN_TASK_MAKE_GRID but for the surface climatology generation task (MAKE_SFC_CLIMO_TN).



	SFC_CLIMO_DIR: (Default: “/path/to/pregenerated/surface/climo/files”)
	Same as GRID_DIR but for the surface climatology generation task.








5.19. Surface Climatology Parameter


	SFC_CLIMO_FIELDS: (Default: “(“facsf” “maximum_snow_albedo” “slope_type” “snowfree_albedo” “soil_type” “substrate_temperature” “vegetation_greenness” “vegetation_type”)”)
	Array containing the names of all the fields for which the MAKE_SFC_CLIMO_TN task generates files on the native FV3-LAM grid.








5.20. Fixed File Parameters

Set parameters associated with the fixed (i.e. static) files.  For the main NOAA HPC platforms, as well as Cheyenne, Odin, and Stampede, fixed files are prestaged with paths defined in the setup.sh script.


	FIXgsm: (Default: “”)
	System directory in which the majority of fixed (i.e. time-independent) files that are needed to run the FV3-LAM model are located.



	TOPO_DIR: (Default: “”)
	The location on disk of the static input files used by the make_orog task (orog.x and shave.x). Can be the same as FIXgsm.



	SFC_CLIMO_INPUT_DIR: (Default: “”)
	The location on disk of the static surface climatology input fields, used by sfc_climo_gen. These files are only used if RUN_TASK_MAKE_SFC_CLIMO=TRUE.



	FNGLAC, ..., FNMSKH: (Default: see below)
	(FNGLAC="global_glacier.2x2.grb"
 FNMXIC="global_maxice.2x2.grb"
 FNTSFC="RTGSST.1982.2012.monthly.clim.grb"
 FNSNOC="global_snoclim.1.875.grb"
 FNZORC="igbp"
 FNAISC="CFSR.SEAICE.1982.2012.monthly.clim.grb"
 FNSMCC="global_soilmgldas.t126.384.190.grb"
 FNMSKH="seaice_newland.grb")





Names of (some of the) global data files that are assumed to exist in a system directory specified (this directory is machine-dependent; the experiment generation scripts will set it and store it in the variable FIXgsm).  These file names also appear directly in the forecast model’s input namelist file.



	FIXgsm_FILES_TO_COPY_TO_FIXam: (Default: see below)
	("$FNGLAC" \
 "$FNMXIC" \
 "$FNTSFC" \
 "$FNSNOC" \
 "$FNAISC" \
 "$FNSMCC" \
 "$FNMSKH" \
 "global_climaeropac_global.txt" \
 "fix_co2_proj/global_co2historicaldata_2010.txt" \
 "fix_co2_proj/global_co2historicaldata_2011.txt" \
 "fix_co2_proj/global_co2historicaldata_2012.txt" \
 "fix_co2_proj/global_co2historicaldata_2013.txt" \
 "fix_co2_proj/global_co2historicaldata_2014.txt" \
 "fix_co2_proj/global_co2historicaldata_2015.txt" \
 "fix_co2_proj/global_co2historicaldata_2016.txt" \
 "fix_co2_proj/global_co2historicaldata_2017.txt" \
 "fix_co2_proj/global_co2historicaldata_2018.txt" \
 "global_co2historicaldata_glob.txt" \
 "co2monthlycyc.txt" \
 "global_h2o_pltc.f77" \
 "global_hyblev.l65.txt" \
 "global_zorclim.1x1.grb" \
 "global_sfc_emissivity_idx.txt" \
 "global_solarconstant_noaa_an.txt" \
 "replace_with_FIXgsm_ozone_prodloss_filename")





If not running in NCO mode, this array contains the names of the files to copy from the FIXgsm system directory to the FIXam directory under the experiment directory.  Note that the last element has a dummy value. This last element will get reset by the workflow generation scripts to the name of the ozone production/loss file to copy from FIXgsm.  The name of this file depends on the ozone parameterization being used, and that in turn depends on the CCPP physics suite specified for the experiment.  Thus, the CCPP physics suite XML must first be read in to determine the ozone parameterization and then the name of the ozone production/loss file.  These steps are carried out elsewhere (in one of the workflow generation scripts/functions).



	FV3_NML_VARNAME_TO_FIXam_FILES_MAPPING: (Default: see below)
	("FNGLAC | $FNGLAC" \
 "FNMXIC | $FNMXIC" \
 "FNTSFC | $FNTSFC" \
 "FNSNOC | $FNSNOC" \
 "FNAISC | $FNAISC" \
 "FNSMCC | $FNSMCC" \
 "FNMSKH | $FNMSKH" )





This array is used to set some of the namelist variables in the forecast model’s namelist file that represent the relative or absolute paths of various fixed files (the first column of the array, where columns are delineated by the pipe symbol “|”) to the full paths to these files in the FIXam directory derived from the corresponding workflow variables containing file names (the second column of the array).



	FV3_NML_VARNAME_TO_SFC_CLIMO_FIELD_MAPPING: (Default: see below)
	("FNALBC  | snowfree_albedo" \
 "FNALBC2 | facsf" \
 "FNTG3C  | substrate_temperature" \
 "FNVEGC  | vegetation_greenness" \
 "FNVETC  | vegetation_type" \
 "FNSOTC  | soil_type" \
 "FNVMNC  | vegetation_greenness" \
 "FNVMXC  | vegetation_greenness" \
 "FNSLPC  | slope_type" \
 "FNABSC  | maximum_snow_albedo" )





This array is used to set some of the namelist variables in the forecast model’s namelist file that represent the relative or absolute paths of various fixed files (the first column of the array, where columns are delineated by the pipe symbol “|”) to the full paths to surface climatology files (on the native FV3-LAM grid) in the FIXLAM directory derived from the corresponding surface climatology fields (the second column of the array).



	CYCLEDIR_LINKS_TO_FIXam_FILES_MAPPING: (Default: see below)
	("aerosol.dat                | global_climaeropac_global.txt" \
 "co2historicaldata_2010.txt | fix_co2_proj/global_co2historicaldata_2010.txt" \
 "co2historicaldata_2011.txt | fix_co2_proj/global_co2historicaldata_2011.txt" \
 "co2historicaldata_2012.txt | fix_co2_proj/global_co2historicaldata_2012.txt" \
 "co2historicaldata_2013.txt | fix_co2_proj/global_co2historicaldata_2013.txt" \
 "co2historicaldata_2014.txt | fix_co2_proj/global_co2historicaldata_2014.txt" \
 "co2historicaldata_2015.txt | fix_co2_proj/global_co2historicaldata_2015.txt" \
 "co2historicaldata_2016.txt | fix_co2_proj/global_co2historicaldata_2016.txt" \
 "co2historicaldata_2017.txt | fix_co2_proj/global_co2historicaldata_2017.txt" \
 "co2historicaldata_2018.txt | fix_co2_proj/global_co2historicaldata_2018.txt" \
 "co2historicaldata_glob.txt | global_co2historicaldata_glob.txt" \
 "co2monthlycyc.txt          | co2monthlycyc.txt" \
 "global_h2oprdlos.f77       | global_h2o_pltc.f77" \
 "global_zorclim.1x1.grb     | global_zorclim.1x1.grb" \
 "sfc_emissivity_idx.txt     | global_sfc_emissivity_idx.txt" \
 "solarconstant_noaa_an.txt  | global_solarconstant_noaa_an.txt" \
 "global_o3prdlos.f77        | " )





This array specifies the mapping to use between the symlinks that need to be created in each cycle directory (these are the “files” that FV3 looks for) and their targets in the FIXam directory.  The first column of the array specifies the symlink to be created, and the second column specifies its target file in FIXam (where columns are delineated by the pipe symbol “|”).








5.21. Workflow Task Parameters

These parameters set the names of the various workflow tasks and usually do not need to be changed.  For each task, additional values set the parameters to pass to the job scheduler (e.g. slurm) that will submit a job for each task to be run.  Parameters include the number of nodes to use to run the job, the number of MPI processes per node, the maximum walltime to allow for the job to complete, and the maximum number of times to attempt to run each task.

Task names:


MAKE_GRID_TN: (Default: “make_grid”)

MAKE_OROG_TN: (Default: “make_orog”)

MAKE_SFC_CLIMO_TN: (Default: “make_sfc_climo”)

GET_EXTRN_ICS_TN: (Default: “get_extrn_ics”)

GET_EXTRN_LBCS_TN: (Default: “get_extrn_lbcs”)

MAKE_ICS_TN: (Default: “make_ics”)

MAKE_LBCS_TN: (Default: “make_lbcs”)

RUN_FCST_TN: (Default: “run_fcst”)

RUN_POST_TN: (Default: “run_post”)



Number of nodes:


NODES_MAKE_GRID: (Default: “1”)

NODES_MAKE_OROG: (Default: “1”)

NODES_MAKE_SFC_CLIMO: (Default: “2”)

NODES_GET_EXTRN_ICS: (Default: “1”)

NODES_GET_EXTRN_LBCS: (Default: “1”)

NODES_MAKE_ICS: (Default: “4”)

NODES_MAKE_LBCS: (Default: “4”)

NODES_RUN_FCST: (Default: “”)  # Calculated in the workflow generation scripts.

NODES_RUN_POST: (Default: “2”)



Number of MPI processes per node:


PPN_MAKE_GRID: (Default: “24”)

PPN_MAKE_OROG: (Default: “24”)

PPN_MAKE_SFC_CLIMO: (Default: “24”)

PPN_GET_EXTRN_ICS: (Default: “1”)

PPN_GET_EXTRN_LBCS: (Default: “1”)

PPN_MAKE_ICS: (Default: “12”)

PPN_MAKE_LBCS: (Default: “12”)

PPN_RUN_FCST: (Default: “24”)  # Can be changed depending on the number of threads used.

PPN_RUN_POST: (Default: “24”)



Wall times:


TIME_MAKE_GRID: (Default: “00:20:00”)

TIME_MAKE_OROG: (Default: “00:20:00”)

TIME_MAKE_SFC_CLIMO: (Default: “00:20:00”)

TIME_GET_EXTRN_ICS: (Default: “00:45:00”)

TIME_GET_EXTRN_LBCS: (Default: “00:45:00”)

TIME_MAKE_ICS: (Default: “00:30:00”)

TIME_MAKE_LBCS: (Default: “00:30:00”)

TIME_RUN_FCST: (Default: “04:30:00”)

TIME_RUN_POST: (Default: “00:15:00”)



Maximum number of attempts.


MAXTRIES_MAKE_GRID: (Default: “1”)

MAXTRIES_MAKE_OROG: (Default: “1”)

MAXTRIES_MAKE_SFC_CLIMO: (Default: “1”)

MAXTRIES_GET_EXTRN_ICS: (Default: “1”)

MAXTRIES_GET_EXTRN_LBCS: (Default: “1”)

MAXTRIES_MAKE_ICS: (Default: “1”)

MAXTRIES_MAKE_LBCS: (Default: “1”)

MAXTRIES_RUN_FCST: (Default: “1”)

MAXTRIES_RUN_POST: (Default: “1”)






5.22. Customized Post Configuration Parameters


	USE_CUSTOM_POST_CONFIG_FILE: (Default: “FALSE”)
	Flag that determines whether a user-provided custom configuration file should be used for post-processing the model data. If this is set to “TRUE”, then the workflow will use the custom post-processing (UPP) configuration file specified in CUSTOM_POST_CONFIG_FP. Otherwise, a default configuration file provided in the EMC_post repository will be used.



	CUSTOM_POST_CONFIG_FP: (Default: “”)
	The full path to the custom post flat file, including filename, to be used for post-processing. This is only used if CUSTOM_POST_CONFIG_FILE is set to “TRUE”.








5.23. Halo Blend Parameter


	HALO_BLEND: (Default: “10”)
	Number of rows into the computational domain that should be blended with the LBCs.  To shut halo blending off, set this to zero.








5.24. FVCOM Parameter


	USE_FVCOM: (Default: “FALSE”)
	Flag that specifies whether or not to update surface conditions in FV3-LAM with fields generated from the Finite Volume Community Ocean Model (FVCOM). If set to “TRUE”, lake/sea surface temperatures, ice surface temperatures, and ice placement will be overwritten by data provided by FVCOM. This is done by running the executable process_FVCOM.exe in the MAKE_ICS_TN task to modify the file sfc_data.nc generated by chgres_cube.  Note that the FVCOM data must already be interpolated to the desired FV3-LAM grid.



	FVCOM_DIR: (Default: “/user/defined/dir/to/fvcom/data”)
	User defined directory in which the file fvcom.nc containing FVCOM data on the FV3-LAM native grid is located. The file name in this directory must be fvcom.nc.



	FVCOM_FILE: (Default: “fvcom.nc”)
	Name of file located in FVCOM_DIR that has FVCOM data interpolated to FV3-LAM grid. This file will be copied later to a new location and the name changed to fvcom.nc.








5.25. Compiler Parameter


	COMPILER: (Default: “intel”)
	Type of compiler invoked during the build step.  Currently, this must be set manually (i.e. it is not inherited from the build system in the ufs-srweather-app directory).











            

          

      

      

    

  

    
      
          
            
  
6. Limited Area Model (LAM) Grids:  Predefined and User-Generated Options

In order to set up the workflow and experiment generation of the UFS SRW App, the user
must choose between three predefined FV3-LAM grids, or generate a user-defined grid.
At this time, full support will only be provided to those using one of the three predefined
grids supported in this release. However, preliminary information is provided at the end of
this chapter that describes how users can leverage the SRW App workflow scripts to generate
their own user-defined grid. This feature is not fully supported at this time and is
‘use at your own risk’.


6.1. Predefined Grids

The UFS SRW App release includes three predefined LAM grids that users can choose from
prior to generating a workflow/experiment configuration.  To select a predefined grid,
the PREDEF_GRID_NAME variable within the config.sh script needs to be set to one
of the following three options:


	RRFS_CONUS_3km


	RRFS_CONUS_13km


	RRFS_CONUS_25km





[image: _images/RRFS_CONUS_3km.sphr.native_wrtcmp.png]
Fig. 6.1 The boundary of the RRFS_CONUS_3km computational grid (red) and corresponding write-component grid (blue).



The predefined grids are named after the prototype 3-km continental United States (CONUS) grid being
tested for the Rapid Refresh Forecast System (RRFS), which will be a convection-allowing,
hourly-cycled, FV3-LAM-based ensemble planned for operational implementation in 2024. To allow
for use of High Resolution Rapid Refresh (HRRR [https://rapidrefresh.noaa.gov/hrrr/]) data to
initialize the SRW App, all three supported grids were created to fit completely within the HRRR domain.
Three resolution options were provided for flexibility related to compute resources
and physics options.  For example, a user may wish to use the 13-km or 25-km domain when running
with the FV3_GFS_v15p2 suite definition file (SDF), since that SDF uses cumulus physics that are
not configured to run at 3-km.  In addition, users will have much fewer computational
constraints when running with the 13-km and 25-km domains.

The boundary of the RRFS_CONUS_3km domain is shown in Figure 6.1 (in red).
Note that while it is possible to initialize the FV3-LAM with coarser external model data when using the
RRFS_CONUS_3km domain, it is generally advised to use external model data that has a resolution
similar to that of the native FV3-LAM (predefined) grid.  In addition, this grid is ideal for running the
FV3_RRFS_v1alpha suite definition file (SDF), since this SDF was specifically created for convection-allowing scales, and is the
precursor to the operational physics suite that will be used in the RRFS.

As can be seen in Figure 6.1, the boundary of the write-component grid (in blue) sits
just inside the computational domain (in red).  This extra grid is required because the post-processing
utility (UPP) is currently unable to process data on the native FV3 gnomonic grid (in red).  Therefore,
model data are interpolated to a Lambert conformal grid (the write component grid) in order for UPP to
read in and correctly process the data.

The RRFS_CONUS_13km grid (Fig. 6.2) also covers the full CONUS,
but due to its coarser resolution, and the need to remain within the HRRR domain, areas of the
contiguous United States, such as Northern Washington, Southern Texas, and the Florida Keys, are
closer to the boundaries of the grid than in the RRFS_CONUS_3km grid.  This grid is meant to
be run with the FV3_GFS_v15p2 SDF.


[image: _images/RRFS_CONUS_13km.sphr.native_wrtcmp.png]
Fig. 6.2 The boundary of the RRFS_CONUS_13km computational grid (red) and corresponding write-component grid (blue).



The final predefined CONUS grid (Fig. 6.3) uses a 25-km resolution and
is meant mostly for quick testing to ensure functionality prior to using a higher-resolution domain.
However, for users who would like to use this domain for research, the FV3_GFS_v15p2 SDF is recommended.


[image: _images/RRFS_CONUS_25km.sphr.native_wrtcmp.png]
Fig. 6.3 The boundary of the RRFS_CONUS_25km computational grid (red) and corresponding write-component grid (blue).






6.2. Creating User-Generated Grids

While the three predefined grids available in this release are ideal for users just starting
out with the SRW App, more advanced users may wish to create their own grid for testing over
a different region and/or with a different resolution.  Creating a user-defined grid requires
knowledge of how the SRW App workflow functions, in particular, understanding the set of
scripts that handle the workflow and experiment generation.  It is also important to note that
user-defined grids are not a supported feature of the current release, however information is
being provided for the benefit of the FV3-LAM community.

With those caveats in mind, this section provides instructions for adding a new grid to the FV3-LAM
workflow that will be generated using the “ESGgrid” method (i.e. using the regional_esg_grid code
in the UFS_UTILS repository, where ESG stands for “Extended Schmidt Gnomonic”).  We assume here
that the grid to be generated covers a domain that (1) does not contain either of the poles and
(2) does not cross the -180 deg –> +180 deg discontinuity in longitude near the international
date line.  Instructions for domains that do not have these restrictions will be provided in a future release.

The steps to add such a grid to the workflow are as follows:


	Decide on the name of the grid.  For the purposes of this documentation, the grid will be called “NEW_GRID”.


	Add NEW_GRID to the array valid_vals_PREDEF_GRID_NAME in the ufs-srweather-app/regional_workflow/ush/valid_param_vals.sh file.


	In the file ufs-srweather-app/regional_workflow/ush/set_predef_grid_params.sh, add a stanza to
the case statement case ${PREDEF_GRID_NAME} in for NEW_GRID.  An example of such a stanza
is given below along with comments describing the variables that need to be set.




To run a forecast experiment on NEW_GRID, start with a workflow configuration file for a successful
experiment (this file is named config.sh and is located in the directory
ufs-srweather-app/regional_workflow/ush) and change the line for PREDEF_GRID_NAME to the following:

PREDEF_GRID_NAME="NEW_GRID"





Then, generate a new experiment/workflow using generate_FV3LAM_wflow.sh in the usual way.

The following is an example of a stanza for “NEW_GRID” to be added to set_predef_grid_params.sh:

#
#---------------------------------------------------------------------
#
# Stanza for NEW_GRID.  This grid covers [provide a description of the
# domain that NEW_GRID covers, its grid cell size, etc].
#
#---------------------------------------------------------------------
#
"NEW_GRID")

# The method used to generate the grid.  This example is specifically
# for the "ESGgrid" method.
  GRID_GEN_METHOD= "ESGgrid"

# The longitude and latitude of the center of the grid, in degrees.
  ESGgrid_LON_CTR=-97.5
  ESGgrid_LAT_CTR=38.5

# The grid cell sizes in the x and y directions, where x and y are the
# native coordinates of any ESG grid.  The units of x and y are in
# meters. These should be set to the nominal resolution we want the
# grid to have. The cells will have exactly these sizes in xy-space
# (computational space) but will have varying size in physical space.
# The advantage of the ESGgrid generation method over the GFDLgrid
# method is that an ESGgrid will have a much smaller variation in grid
# size in physical space than a GFDLgrid.
  ESGgrid_DELX="25000.0"
  ESGgrid_DELY="25000.0"

# The number of cells along the x and y axes.
  ESGgrid_NX=200
  ESGgrid_NY=112

# The width of the halo (in units of grid cells) that the temporary
# wide-halo grid created during the grid generation task (make_grid)
# will have.  This wide-halo grid gets "shaved" down to obtain the
# 4-cell-wide halo and 3-cell-wide halo grids that the forecast model
# (as well as other codes) will actually use.  Recall that the halo is
# needed to provide lateral boundary conditions to the forecast model.
# Usually, there is no need to modify this parameter.
  ESGgrid_WIDE_HALO_WIDTH=6

# The default physics time step that the forecast model will use. This
# is the (inverse) frequency with which (most of) the physics suite is
# called. The smaller the grid cell size is, the smaller this value
# needs to be in order to avoid numerical instabilities during the
# forecast.  The values specified below are used only if DT_ATMOS is
# not explicitly set in the user-specified experiment configuration
# file config.sh.  Note that this parameter may be suite dependent.
  if [ "${CCPP_PHYS_SUITE}" = "FV3_GFS_v15p2" ]; then
    DT_ATMOS=${DT_ATMOS:-"300"}
  elif [ "${CCPP_PHYS_SUITE}" = "FV3_RRFS_v1alpha" ]; then
    DT_ATMOS=${DT_ATMOS:-"40"}
  else
    DT_ATMOS=${DT_ATMOS:-"40"}
  fi

# Default MPI task layout (decomposition) along the x and y directions and blocksize.
# The values specified below are used only if they are not explicitly set in the user-specified
# experiment configuration file config.sh.
  LAYOUT_X=${LAYOUT_X:-"5"}
  LAYOUT_Y=${LAYOUT_Y:-"2"}
  BLOCKSIZE=${BLOCKSIZE:-"40"}

# The parameters for the write-component (aka "quilting") grid. This
# is the grid to which the output fields from the forecast are
# interpolated. The output fields are not specified on the native grid
# but are instead remapped to this write-component grid because the
# post-processing software (UPP; called during the run_post tasks) is
# not able to process fields on the native grid.  The variable
# "QUILTING", which specifies whether or not to use the
# write-component grid, is by default set to "TRUE".
  if [ "$QUILTING" = "TRUE" ]; then

# The number of "groups" of MPI tasks that may be running at any given
# time to write out the output.  Each write group will be writing to
# one set of output files (a dynf${fhr}.nc and a phyf${fhr}.nc file,
# where $fhr is the forecast hour).  Each write group contains
# WRTCMP_write_tasks_per_group tasks. Usually, it is sufficient to
# have just one write group.  This may need to be increased if the
# forecast is proceeding so quickly that a single write group cannot
# complete writing to its set of files before there is a need/request
# to start writing the next set of files at the next output time (this
# can happen, for instance, if the forecast model is trying to write
# output at every time step).
    WRTCMP_write_groups="1"

# The number of MPI tasks to allocate to each write group.
    WRTCMP_write_tasks_per_group="2"

# The coordinate system in which the write-component grid is
# specified. See the array valid_vals_WRTCMP_output_grid (defined in
# the script valid_param_vals.sh) for the values this can take on.
# The following example is specifically for the Lambert conformal
# coordinate system.
    WRTCMP_output_grid="lambert_conformal"

# The longitude and latitude of the center of the write-component
# grid.
    WRTCMP_cen_lon="${ESGgrid_LON_CTR}"
    WRTCMP_cen_lat="${ESGgrid_LAT_CTR}"

# The first and second standard latitudes needed for the Lambert
# conformal coordinate mapping.
    WRTCMP_stdlat1="${ESGgrid_LAT_CTR}"
    WRTCMP_stdlat2="${ESGgrid_LAT_CTR}"

# The number of grid points in the x and y directions of the
# write-component grid. Note that this xy coordinate system is that of
# the write-component grid (which in this case is Lambert conformal).
# Thus, it is in general different than the xy coordinate system of
# the native ESG grid.
    WRTCMP_nx="197"
    WRTCMP_ny="107"

# The longitude and latitude of the lower-left corner of the
# write-component grid, in degrees.
    WRTCMP_lon_lwr_left="-121.12455072"
    WRTCMP_lat_lwr_left="23.89394570"

# The grid cell sizes along the x and y directions of the
# write-component grid.  Units depend on the coordinate system used by
# the grid (i.e. the value of WRTCMP_output_grid). For a Lambert
# conformal write-component grid, the units are in meters.
    WRTCMP_dx="${ESGgrid_DELX}"
    WRTCMP_dy="${ESGgrid_DELY}"

  fi
  ;;











            

          

      

      

    

  

    
      
          
            
  
7. Input and Output Files

This chapter provides an overview of the input and output files needed by the components
of the UFS SRW Application (UFS_UTILS, the UFS Weather Model, and UPP).
Links to more detailed documentation for each of the components are provided.


7.1. Input Files

The SRW Application requires numerous input files to run: static datasets (fix files
containing climatological information, terrain and land use data), initial and boundary
conditions files, and model configuration files (such as namelists).


7.1.1. Initial and Boundary Condition Files

The external model files needed for initializing the runs can be obtained in a number of
ways, including: pulled directly from NOMADS [https://nomads.ncep.noaa.gov/pub/data/nccf/com/];
limited data availability), pulled from the NOAA HPSS during the workflow execution (requires
user access), or obtained and staged by the user from a different source. The data format for
these files can be GRIB2 or NEMSIO. More information on downloading and staging
the external model data can be found in Section 7.3. Once staged,
the end-to-end application will run the system and write output files to disk.




7.1.2. Pre-processing (UFS_UTILS)

When a user runs the SRW Application as described in the quickstart guide
Section 2, input data for the pre-processing utilities is linked
from a location on disk to your experiment directory by the workflow generation step. The
pre-processing utilities use many different datasets to create grids, and to generate model
input datasets from the external model files.  A detailed description of the input files
for the pre-processing utilities can be found here [https://noaa-emcufs-utils.readthedocs.io/en/ufs-v2.0.0/].




7.1.3. UFS Weather Model

The input files for the weather model include both static (fixed) files and grid and date
specific files (terrain, initial conditions, boundary conditions, etc). The static fix files
must be staged by the user unless you are running on a pre-configured platform, in which case
you can link to the existing copy on that machine. See Section 7.3.1
for more information. The static, grid, and date specific files are linked in the experiment
directory by the workflow scripts. An extensive description of the input files for the weather
model can be found in the UFS Weather Model User’s Guide [https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/].
The namelists and configuration files for the SRW Application are created from templates by the
workflow, as described in Section 7.1.5.




7.1.4. Unified Post Processor (UPP)

Documentation for the UPP input files can be found in the UPP User’s Guide [https://upp.readthedocs.io/en/upp-v9.0.0/InputsOutputs.html].




7.1.5. Workflow

The SRW Application uses a series of template files, combined with user selected settings,
to create the required namelists and parameter files needed by the Application. These
templates can be reviewed to see what defaults are being used, and where configuration parameters
are assigned from the config.sh file.


7.1.5.1. List of Template Files

The template files for the SRW Application are located in regional_workflow/ush/templates
and are shown in Table 7.1.


Table 7.1 Template files for a regional workflow.





	File Name

	Description





	data_table

	Cycle-independent file that the forecast model reads in at
the start of each forecast. It is an empty file. No need to
change.



	diag_table_[CCPP]

	File specifying the output fields of the forecast model.
A different diag_table may be configured for different
CCPP suites.



	field_table_[CCPP]

	Cycle-independent file that the forecast model reads in at
the start of each forecast. It specifies the tracers that
the forecast model will advect.  A different field_table
may be needed for different CCPP suites.



	FV3.input.yml

	YAML configuration file containing the forecast model’s
namelist settings for various physics suites. The values
specified in this file update the corresponding values in
the input.nml file. This file may be modified for the
specific namelist options of your experiment.



	FV3LAM_wflow.xml

	Rocoto XML file to run the workflow. It is filled in using
the fill_template.py python script that is called in
the generate_FV3LAM_wflow.sh.



	input.nml.FV3

	Namelist file of the weather model.



	model_configure

	Settings and configurations for the NUOPC/ESMF main
component.



	nems.configure

	NEMS (NOAA Environmental Modeling System) configuration
file, no need to change because it is an atmosphere-only
model in the SRW Application.



	regional_grid.nml

	Namelist settings for the code that generates an ESG grid.



	README.xml_templating.md

	Instruction of Rocoto XML templating with Jinja.






Additional information related to the diag_table_[CCPP], field_table_[CCPP], input.nml.FV3,
model_conigure, and nems.configure can be found in the UFS Weather Model User’s Guide [https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/InputsOutputs.html#input-files],
while information on the regional_grid.nml can be found in the UFS_UTILS User’s Guide [https://noaa-emcufs-utils.readthedocs.io/en/ufs-v2.0.0/].




7.1.5.2. Migratory Route of the Input Files in the Workflow

Figure 7.1 shows how the case-specific input files in the
ufs-srweather-app/regional_workflow/ush/templates/ directory flow to the experiment directory.
The value of CCPP_PHYS_SUITE is specified in the configuration file config.sh. The template
input files corresponding to CCPP_PHYS_SUITE, such as field_table and nems_configure, are
copied to the experiment directory EXPTDIR and the namelist file of the weather model input.nml
is created from the input.nml.FV3 and FV3.input.yml files by running the script generate_FV3LAM_wflow.sh.
While running the task RUN_FCST in the regional workflow as shown in Figure 4.3,
the field_table, nems.configure, and input.nml files, located in EXPTDIR are linked to the
cycle directory CYCLE_DIR/, and diag_table and model_configure are copied from the templates
directory. Finally, these files are updated with the variables specified in var_defn.sh.


[image: _images/FV3LAM_wflow_input_path.png]
Fig. 7.1 Migratory route of input files










7.2. Output Files

The location of the output files written to disk is defined by the experiment directory,
EXPTDIR/YYYYMMDDHH, as set in config.sh.


7.2.1. Initial and boundary condition files

The external model data used by chgres_cube (as part of the pre-processing utilities) are located
in the experiment run directory under EXPTDIR/YYYYMMDDHH/{EXTRN_MDL_NAME_ICS/LBCS}.




7.2.2. Pre-processing (UFS_UTILS)

The files output by the pre-processing utilities reside in the INPUT directory under the
experiment run directory EXPTDIR/YYYYMMDDHH/INPUT and consist of the following:


	C403_grid.tile7.halo3.nc


	gfs_bndy.tile7.000.nc


	gfs_bndy.tile7.006.nc


	gfs_ctrl.nc


	gfs_data.nc -> gfs_data.tile7.halo0.nc


	grid_spec.nc -> ../../grid/C403_mosaic.halo3.nc


	grid.tile7.halo4.nc -> ../../grid/C403_grid.tile7.halo4.nc


	oro_data.nc -> ../../orog/C403_oro_data.tile7.halo0.nc


	sfc_data.nc -> sfc_data.tile7.halo0.nc




These output files are used as inputs for the UFS weather model, and are described in the Users Guide [https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/InputsOutputs.html#grid-description-and-initial-condition-files].




7.2.3. UFS Weather Model

As mentioned previously, the workflow can be run in ‘community’ or ‘nco’ mode, which determines
the location and names of the output files.  In addition to this option, output can also be in
netCDF or nemsio format.  The output file format is set in the model_configure files using the
output_file variable.  At this time, due to limitations in the post-processing component, only netCDF
format output is recommended for the SRW application.


Note

In summary, the fully supported options for this release include running in ‘community’ mode with netCDF format output files.



In this case, the netCDF output files are written to the EXPTDIR/YYYYMMDDHH directory. The bases of
the file names are specified in the input file model_configure and are set to the following in the SRW Application:


	dynfHHH.nc


	phyfHHH.nc




Additional details may be found in the UFS Weather Model Users Guide [https://ufs-weather-model.readthedocs.io/en/ufs-v2.0.0/InputsOutputs.html#output-files].




7.2.4. Unified Post Processor (UPP)

Documentation for the UPP output files can be found here [https://upp.readthedocs.io/en/upp-v9.0.0/InputsOutputs.html].

For the SRW Application, the weather model netCDF output files are written to the EXPTDIR/YYYYMMDDHH/postprd
directory and have the naming convention (file->linked to):


	BGRD3D_{YY}{JJJ}{hh}{mm}f{fhr}00 -> {domain}.t{cyc}z.bgrd3df{fhr}.tmXX.grib2


	BGDAWP_{YY}{JJJ}{hh}{mm}f{fhr}00 -> {domain}.t{cyc}z.bgdawpf{fhr}.tmXX.grib2




The default setting for the output file names uses rrfs for {domain}.  This may be overridden by
the user in the config.sh settings.

If you wish to modify the fields or levels that are output from the UPP, you will need to make
modifications to file fv3lam.xml, which resides in the UPP repository distributed with the UFS SRW
Application. Specifically, if the code was cloned in the directory ufs-srweather-app, the file will be
located in ufs-srweather-app/src/EMC_post/parm.


Note

This process requires advanced knowledge of which fields can be output for the UFS Weather Model.



Use the directions in the UPP User’s Guide [https://upp.readthedocs.io/en/upp-v9.0.0/InputsOutputs.html#control-file]
for details on how to make modifications to the fv3lam.xml file and for remaking the flat text file that
the UPP reads, which is called postxconfig-NT-fv3lam.txt (default).

Once you have created the new flat text file reflecting your changes, you will need to modify your
config.sh to point the workflow to the new text file. In your config.sh, set the following:

USE_CUSTOM_POST_CONFIG_FILE=”TRUE”
CUSTOM_POST_CONFIG_PATH=”/path/to/custom/postxconfig-NT-fv3lam.txt”





which tells the workflow to use the custom file located in the user-defined path. The path should
include the filename. If this is set to true and the file path is not found, then an error will occur
when trying to generate the SRW Application workflow.

You may then start your case workflow as usual and the UPP will use the new flat *.txt file.






7.3. Downloading and Staging Input Data

A set of input files, including static (fix) data and raw initial and lateral boundary conditions
(IC/LBCs), are needed to run the SRW Application.


7.3.1. Static Files

A set of fix files are necessary to run the SRW Application. Environment variables describe the
location of the static files: FIXgsm, TOPO_DIR, and SFC_CLIMO_INPUT_DIR are the directories
where the static files are located. If you are on a pre-configured or configurable platform, there is no
need to stage the fixed files manually because they have been prestaged and the paths
are set in regional_workflow/ush/setup.sh. If the user’s platform is not defined
in that file, the static files can be pulled individually or as a full tar file from the FTP data repository [https://ftp.emc.ncep.noaa.gov/EIB/UFS/SRW/v1p0/fix/] or from Amazon Web Services (AWS) cloud storage [https://ufs-data.s3.amazonaws.com/public_release/ufs-srweather-app-v1.0.0/fix/fix_files.tar.gz]
and staged on your machine. The paths to the staged files must then be set in config.sh
as follows:


	FIXgsm=/path-to/fix/fix_am


	TOPO_DIR=/path-to/fix/fix_am/fix_orog


	SFC_CLIMO_INPUT_DIR=/path-to/fix_am/fix/sfc_climo/







7.3.2. Initial Condition Formats and Source

The SRW Application currently supports raw initial and lateral boundary conditions from numerous models
(i.e., FV3GFS, NAM, RAP, HRRR). The data can be provided in three formats: NEMSIO, netCDF,
or GRIB2.  The SRW Application currently only supports the use of NEMSIO and NetCDF input files
from the GFS.

Environment variables describe what IC/LBC files to use (pre-staged files or files to be automatically
pulled from the NOAA HPSS) and the location of the and IC/LBC files: USE_USER_STAGED_EXTRN_FILES
is the T/F flag defining what raw data files to use, EXTRN_MDL_SOURCE_BASEDIR_ICS is the
directory where the initial conditions are located, and EXTRN_MDL_SOURCE_BASEDIR_LBCS is the
directory where the lateral boundary conditions are located.

If you have access to the NOAA HPSS and want to automatically download the IC/LBC files using the
workflow, these environment variables can be left out of the config.sh file. However, if you do
not have access to the NOAA HPSS and you need to pull and stage the data manually, you will need to
set USE_USER_STAGED_EXTRN_FILES to TRUE and then set the paths to the where the IC/LBC files are located.

A small sample of IC/LBCs is available at the FTP data repository [https://ftp.emc.ncep.noaa.gov/EIB/UFS/SRW/v1p0/simple_test_case/gst_model_data.tar.gz] or from AWS cloud storage [https://ufs-data.s3.amazonaws.com/public_release/ufs-srweather-app-v1.0.0/ic/gst_model_data.tar.gz].




7.3.3. Initial and Lateral Boundary Condition Organization

The suggested directory structure and naming convention for the raw input files is described
below. While there is flexibility to modify these settings, this will provide the most reusability
for multiple dates when using the SRW Application workflow.

For ease of reusing the config.sh for multiple dates and cycles, it is recommended to set up
your raw IC/LBC files such that it includes the model name (e.g., FV3GFS, NAM, RAP, HRRR) and
YYYYMMDDHH, for example:  /path-to/model_data/FV3GFS/2019061518. Since both initial
and lateral boundary condition files are necessary, you can also include an ICS and LBCS directory.
The sample IC/LBCs available at the FTP data repository are structured as follows:


	/path-to/model_data/MODEL/YYYYMMDDHH/ICS


	/path-to/model_data/MODEL/YYYYMMDDHH/LBCS




When files are pulled from the NOAA HPSS, the naming convention looks something like:


	FV3GFS (grib2): gfs.t{cycle}z.pgrb2.0p25.f{fhr}


	FV3GFS (nemsio): ICs: gfs.t{cycle}z.atmanl.nemsio and gfs.t{cycle}z.sfcanl.nemsio;
LBCs: gfs.t{cycle}z.atmf{fhr}.nemsio


	RAP (grib2): rap.t{cycle}z.wrfprsf{fhr}.grib2


	HRRR (grib2): hrrr.t{cycle}z.wrfprsf{fhr}.grib2




In order to preserve the original file name, the f00 files are placed in the ICS directory
and all other forecast files are placed in the LBCS directory. Then, a symbolic link of the
original files in the ICS/LBCS directory to the YYYYMMDDHH directory is suggested with
the cycle removed. For example:

ln -sf /path-to/model_data/RAP/2020041212/ICS/rap.t12z.wrfprsf00.grib2 /path-to/model_data/RAP/2020041212/rap.wrfprsf00.grib2





Doing this allows for the following to be set in the config.sh regardless of what cycle you are running:

USE_USER_STAGED_EXTRN_FILES="TRUE"
EXTRN_MDL_SOURCE_BASEDIR_ICS="/path-to/model_data/HRRR"
EXTRN_MDL_FILES_ICS=( "hrrr.wrfprsf00.grib2" )
EXTRN_MDL_SOURCE_BASEDIR_LBCS="/path-to/model_data/RAP"
EXTRN_MDL_FILES_LBCS=( "rap.wrfprsf03.grib2" "rap.wrfprsf06.grib2" )





If you choose to forgo the extra ICS and LBCS directory, you may also simply either
rename the original files to remove the cycle or modify the config.sh to set:

EXTRN_MDL_FILES_ICS=( "hrrr.t{cycle}z.wrfprsf00.grib2" )
EXTRN_MDL_FILES_LBCS=( "rap.t{cycle}z.wrfprsf03.grib2" "rap.t{cycle}z.wrfprsf06.grib2" )








7.3.4. Default Initial and Lateral Boundary Conditions

The default initial and lateral boundary condition files are set to be a severe weather case
from 20190615 at 00 UTC. FV3GFS grib2 files are the default model and file format. A tar file
(gst_model_data.tar.gz) containing the model data for this case is available on EMC’s FTP
data repository at https://ftp.emc.ncep.noaa.gov/EIB/UFS/SRW/v1p0/simple_test_case/. It is
also available on Amazon Web Services (AWS) at
https://ufs-data.s3.amazonaws.com/public_release/ufs-srweather-app-v1.0.0/ic/gst_model_data.tar.gz.




7.3.5. Running the App for Different Dates

If users want to run the SRW Application for dates other than 06-15-2019, you will need to
make a change in the case to specify the desired data. This is done by modifying the
config.sh DATE_FIRST_CYCL, DATE_LAST_CYCL, and CYCL_HRS settings. The
forecast length can be modified by changed the FCST_LEN_HRS. In addition, the lateral
boundary interval can be specified using the LBC_SPEC_INTVL_HRS variable.

Users will need to ensure that the initial and lateral boundary condition files are available
in the specified path for their new date, cycle, and forecast length.




7.3.6. Staging Initial Conditions Manually

If users want to run the SRW Application with raw model files for dates other than what
are currently available on the preconfigured platforms, they need to stage the data manually.
The data should be placed in EXTRN_MDL_SOURCE_BASEDIR_ICS and EXTRN_MDL_SOURCE_BASEDIR_LBCS.
Raw model files may be available from a number of sources. A few examples are provided here for convenience.

NOMADS: https://nomads.ncep.noaa.gov/pub/data/nccf/com/{model}/prod, where model may be:


	GFS (grib2 or nemsio) - available for the last 10 days
https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/


	NAM - available for the last 8 days
https://nomads.ncep.noaa.gov/pub/data/nccf/com/nam/prod/


	RAP - available for the last 2 days
https://nomads.ncep.noaa.gov/pub/data/nccf/com/rap/prod/


	HRRR - available for the last 2 days
https://nomads.ncep.noaa.gov/pub/data/nccf/com/hrrr/prod/




NCDC archive:


	GFS: https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs


	NAM: https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-mesoscale-forecast-system-nam


	RAP: https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/rapid-refresh-rap




AWS S3:


	GFS: https://registry.opendata.aws/noaa-gfs-bdp-pds/


	HRRR: https://registry.opendata.aws/noaa-hrrr-pds/ (necessary fields for initializing available for dates 2015 and newer)




Google Cloud:


	HRRR: https://console.cloud.google.com/marketplace/product/noaa-public/hrrr




Others:


	Univ. of Utah HRRR archive: http://home.chpc.utah.edu/~u0553130/Brian_Blaylock/cgi-bin/hrrr_download.cgi


	NAM nest archive: https://www.ready.noaa.gov/archives.php


	NAM data older than 6 months can be requested through the Archive Information Request System: https://www.ncei.noaa.gov/has/HAS.FileAppRouter?datasetname=NAM218&subqueryby=STATION&applname=&outdest=FILE


	RAP isobaric data older than 6 months can be requested through the Archive Information Request System: https://www.ncei.noaa.gov/has/HAS.FileAppRouter?datasetname=RAP130&subqueryby=STATION&applname=&outdest=FILE







7.3.7. Coexistence of Multiple Files for the Same Date

If you would like to have multiple file formats (e.g., GRIB2, NEMSIO, netCDF) for the same date
it is recommended to have a separate directory for each file format. For example, if you have GFS
GRIB2 and NEMSIO files your directory structure might look like:

/path-to/model_data/FV3GFS/YYYYMMDDHH/ICS and LBCS
/path-to/model_data/FV3GFS_nemsio/YYYYMMDDHH/ICS and LBCS





If you want to use GRIB2 format files for FV3GFS you must also set two additional environment
variables, including:

FV3GFS_FILE_FMT_ICS="grib2"
FV3GFS_FILE_FMT_LBCS="grib2"





This is ONLY necessary if you are using FV3GFS GRIB2 files. These settings may be removed if you
are initializing from NEMSIO format FV3GFS files.




7.3.8. Best Practices for Conserving Disk Space and Keeping Files Safe

Initial and lateral boundary condition files are large and can occupy a significant amount of
disk space. If various users will employ a common file system to conduct runs, it is recommended
that the users share the same EXTRN_MDL_SOURCE_BASEDIR_ICS and EXTRN_MDL_SOURCE_BASEDIR_LBCS
directories. That way, if raw model input files are already on disk for a given date they do not
need to be replicated.

The files in the subdirectories of the EXTRN_MDL_SOURCE_BASEDIR_ICS and EXTRN_MDL_SOURCE_BASEDIR_LBCS
directories should be write-protected. This prevents these files from being accidentally modified or deleted.
The directories should generally be group writable so the directory can be shared among multiple users.









            

          

      

      

    

  

    
      
          
            
  
8. Configuring a New Platform

The UFS SRW Application has been designed to work primarily on a number of Level 1 and 2 support platforms, as specified here [https://github.com/ufs-community/ufs-srweather-app/wiki/Supported-Platforms-and-Compilers]. However, it is also designed with flexibility in mind, so that any sufficiently up-to-date machine with a UNIX-based operating system should be capable of running the application. A full list of prerequisites for installing the UFS SRW App and running the Graduate Student Test can be found in Section 8.7.

The first step to installing on a new machine is to install NCEPLIBS (https://github.com/NOAA-EMC/NCEPLIBS), the NCEP libraries package, which is a set of libraries created and maintained by NCEP and EMC that are used in many parts of the UFS. NCEPLIBS comes with a large number of prerequisites (see Section 8.7 for more info), but the only required software prior to starting the installation process are as follows:


	Fortran compiler with support for Fortran 2003



	gfortran v9+ or ifort v18+ are the only ones tested, but others may work.









	C and C++ compilers compatible with the Fortran compiler



	gcc v9+, ifort v18+, and clang v9+ (macOS, native Apple clang or LLVM clang) have been tested









	Python v3.6+



	Prerequisite packages must be downloaded: jinja2, yaml and f90nml, as well as a number of additional Python modules (see Section 8.7) if the user would like to use the provided graphics scripts









	Perl 5


	git v1.8+


	CMake v3.12+



	CMake v3.15+ is needed for building NCEPLIBS, but versions as old as 3.12 can be used to build NCEPLIBS-external, which contains a newer CMake that can be used for the rest of the build.











For both Linux and macOS, you will need to set the stack size to “unlimited” (if allowed) or the largest possible value.

# Linux, if allowed
ulimit -s unlimited

# macOS, this corresponds to 65MB
ulimit -S -s unlimited





For Linux systems, as long as the above software is available, you can move on to the next step: installing the NCEPLIBS-external package.

For macOS systems, some extra software is needed: wget, coreutils, pkg-config, and gnu-sed.
It is recommended that you install this software using the Homebrew package manager for macOS (https://brew.sh/):


	brew install wget


	brew install cmake


	brew install coreutils


	brew install pkg-config


	brew install gnu-sed




However, it is also possible to install these utilities via Macports (https://www.macports.org/), or installing each utility individually (not recommended).


8.1. Installing NCEPLIBS-external

In order to facilitate the installation of NCEPLIBS (and therefore, the SRW and other UFS applications) on new platforms, EMC maintains a one-stop package containing most of the prerequisite libraries and software necessary for installing NCEPLIBS. This package is known as NCEPLIBS-external, and is maintained in a git repository at https://github.com/NOAA-EMC/NCEPLIBS-external. Instructions for installing these will depend on your platform, but generally so long as all the above-mentioned prerequisites have been installed you can follow the proceeding instructions verbatim (in bash; a csh-based shell will require different commands). Some examples for installing on specific platforms can be found in the NCEPLIBS-external/doc directory <https://github.com/NOAA-EMC/NCEPLIBS-external/tree/release/public-v2/doc>.

These instructions will install the NCEPLIBS-external in the current directory tree, so be sure you are in the desired location before starting.

export WORKDIR=`pwd`
export INSTALL_PREFIX=${WORKDIR}/NCEPLIBS-ufs-v2.0.0/
export CC=gcc
export FC=gfortran
export CXX=g++





The CC, CXX, and FC variables should specify the C, C++, and Fortran compilers you will be using, respectively. They can be the full path to the compiler if necessary (for example, on a machine with multiple versions of the same compiler). It will be important that all libraries and utilities are built with the same set of compilers, so it is best to set these variables once at the beginning of the process and not modify them again.

mkdir -p ${INSTALL_PREFIX}/src && cd ${INSTALL_PREFIX}/src
git clone -b release/public-v2 --recursive https://github.com/NOAA-EMC/NCEPLIBS-external
cd NCEPLIBS-external
mkdir build && cd build
cmake -DCMAKE_INSTALL_PREFIX=${INSTALL_PREFIX} .. 2>&1 | tee log.cmake
make -j4 2>&1 | tee log.make





The previous commands go through the process of cloning the git repository for NCEPLIBS-external, creating and entering a build directory, and invoking cmake and make to build the code/libraries. The make step will take a while; as many as a few hours depending on your machine and various settings. It is highly recommended you use at least 4 parallel make processes to prevent overly long installation times. The -j4 option in the make command specifies 4 parallel make processes, -j8 would specify 8 parallel processes, while omitting the flag all together will run make serially (not recommended).

If you would rather use a different version of one or more of the software packages included in NCEPLIBS-external, you can skip building individual parts of the package by including the proper flags in your call to cmake. For example:

cmake -DBUILD_MPI=OFF -DCMAKE_INSTALL_PREFIX=${INSTALL_PREFIX} .. 2>&1 | tee log.cmake





will skip the building of MPICH that comes with NCEPLIBS-external. See the readme file NCEPLIBS-external/README.md for more information on these flags, or for general troubleshooting.

Once NCEPLIBS-external is installed, you can move on to installing NCEPLIBS.




8.2. Installing NCEPLIBS

Prior to building the UFS SRW Application on a new machine, you will need to install NCEPLIBS. Installation instructions will again depend on your platform, but so long as NCEPLIBS-external has been installed successfully you should be able to build NCEPLIBS. The following instructions will install the NCEPLIBS in the same directory tree as was used for NCEPLIBS-external above, so if you did not install NCEPLIBS-external in the same way, you will need to modify these commands.

cd ${INSTALL_PREFIX}/src
git clone -b release/public-v2 --recursive https://github.com/NOAA-EMC/NCEPLIBS
cd NCEPLIBS
mkdir build && cd build
export ESMFMKFILE=${INSTALL_PREFIX}/lib/esmf.mk
cmake -DCMAKE_INSTALL_PREFIX=${INSTALL_PREFIX} -DCMAKE_PREFIX_PATH=${INSTALL_PREFIX} -DOPENMP=ON .. 2>&1 | tee log.cmake
make -j4 2>&1 | tee log.make
make deploy 2>&1 | tee log.deploy





As with NCEPLIBS-external, the above commands go through the process of cloning the git repository for NCEPLIBS, creating and entering a build directory, and invoking cmake and make to build the code. The make deploy step created a number of modulefiles and scripts that will be used for setting up the build environment for the UFS SRW App. The ESMFMKFILE variable allows NCEPLIBS to find the location where ESMF has been built; if you receive a ESMF not found, abort error, you may need to specify a slightly different location:

export ESMFMKFILE=${INSTALL_PREFIX}/lib64/esmf.mk





Then delete and re-create the build directory and continue the build process as described above.

If you skipped the building of any of the software provided by NCEPLIBS-external, you may need to add the appropriate locations to your CMAKE_PREFIX_PATH variable. Multiple directories may be added, separated by semicolons (;) like in the following example:

cmake -DCMAKE_INSTALL_PREFIX=${INSTALL_PREFIX} -DCMAKE_PREFIX_PATH=”${INSTALL_PREFIX};/location/of/other/software” -DOPENMP=ON .. 2>&1 | tee log.cmake





Further information on including prerequisite libraries, as well as other helpful tips, can be found in the NCEPLIBS/README.md file.

Once the NCEPLIBS package has been successfully installed, you can move on to building the UFS SRW Application.




8.3. Building the UFS Short-Range Weather Application (UFS SRW App)

Building the UFS SRW App is similar to building NCEPLIBS, in that the code is stored in a git repository and is built using CMake software. The first step is to retrieve the code from Github, using the variables defined earlier:

cd ${WORKDIR}
git clone -b release/public-v1 https://github.com/ufs-community/ufs-srweather-app.git
cd ufs-srweather-app/
./manage_externals/checkout_externals





Here the procedure differs a bit from NCEPLIBS and NCEPLIBS-external. The UFS SRW App is maintained using an umbrella git repository that collects the individual components of the application from their individual, independent git repositories. This is handled using “Manage Externals” software, which is included in the application; this is the final step listed above, which should output a bunch of dialogue indicating that it is retrieving different code repositories as described in Table 3.1. It may take several minutes to download these repositories.

Once the Manage Externals step has completed, you will need to make sure your environment is set up so that the UFS SRW App can find all of the prerequisite software and libraries. There are a few ways to do this, the simplest of which is to load a modulefile if your machine supports Lua Modules:

module use ${INSTALL_PREFIX}/modules
module load NCEPLIBS/2.0.0





If your machine does not support Lua but rather TCL modules, see instructions in the NCEPLIBS/README.md file for converting to TCL modulefiles.

If your machine does not support modulefiles, you can instead source the provided bash script for setting up the environment:

source ${INSTALL_PREFIX}/bin/setenv_nceplibs.sh





This script, just like the modulefiles, will set a number of environment variables that will allow CMake to easily find all the libraries that were just built. There is also a csh version of the script in the same directory if your shell is csh-based. If you are using your machine’s pre-built version of any of the NCEP libraries (not recommended), reference that file to see which variables should be set to point CMake in the right direction.

At this point there are just a few more variables that need to be set prior to building:

export CMAKE_C_COMPILER=mpicc
export CMAKE_CXX_COMPILER=mpicxx
export CMAKE_Fortran_COMPILER=mpifort





If you are using your machine’s built-in MPI compilers, it is recommended you set the CMAKE_*_COMPILER flags to full paths to ensure that the correct MPI aliases are used. Finally, one last environment variable, CMAKE_Platform, must be set. This will depend on your machine; for example, on a macOS operating system with GNU compilers:

export CMAKE_Platform=macosx.gnu





This is the variable used by the weather model to set a few additional flags based on your machine. The available options can be found here [https://github.com/ufs-community/ufs-weather-model/tree/release/public-v2/modulefiles].

Now all the prerequisites have been installed and variables set, so you should be ready to build the model!

mkdir build && cd build
cmake .. -DCMAKE_INSTALL_PREFIX=.. | tee log.cmake
make -j4 | tee log.make





On many platforms this build step will take less than 30 minutes, but for some machines it may take up to a few hours, depending on the system architecture, compiler and compiler flags, and number of parallel make processes used.




8.4. Setting Up Your Python Environment

The regional_workflow repository contains scripts for generating and running experiments, and these require some specific python packages to function correctly. First, as mentioned before, your platform will need Python 3.6 or newer installed. Once this is done, you will need to install several python packages that are used by the workflow: jinja2 (https://jinja2docs.readthedocs.io/), pyyaml (https://pyyaml.org/wiki/PyYAML), and f90nml (https://pypi.org/project/f90nml/). These packages can be installed individually, but it is recommended you use a package manager (https://www.datacamp.com/community/tutorials/pip-python-package-manager).

If you have conda on your machine:

conda install jinja2 pyyaml f90nml





Otherwise you may be able to use pip3 (the Python3 package manager; may need to be installed separately depending on your platform):

pip3 install jinja2 pyyaml f90nml





Running the graphics scripts in ${WORKDIR}/ufs-srweather-app/regional_workflow/ush/Python will require the additional packages pygrib, cartopy, matplotlib, scipy, and pillow. These can be installed in the same way as described above.

For the final step of creating and running an experiment, the exact methods will depend on if you are running with or without a workflow manager (Rocoto).




8.5. Running Without a Workflow Manager: Generic Linux and macOS Platforms

Now that the code has been built, you can stage your data as described in Section 7.3.

Once the data has been staged, setting up your experiment on a platform without a workflow manager is similar to the procedure for other platforms described in earlier chapters. Enter the ${WORKDIR}/ufs-srweather-app/regional_workflow/ush directory and configure the workflow by creating a config.sh file as described in Chapter 5. There will be a few specific settings that you may need change prior to generating the experiment compared to the instructions for pre-configured platforms:


	MACHINE="MACOS" or MACHINE="LINUX"
	These are the two MACHINE settings for generic, non-Rocoto-based platforms; you should choose the one most appropriate for your machine. MACOS has its own setting due to some differences in how command-line utilities function on Darwin-based operating systems.





LAYOUT_X=2
LAYOUT_Y=2


These are the settings that control the MPI decomposition when running the weather model. There are default values, but for your machine it is recommended that you specify your own layout to achieve the correct number of MPI processes for your application.  In total, your machine should be able to handle LAYOUT_X×LAYOUT_Y+WRTCMP_write_tasks_per_group tasks. WRTCMP_write_tasks_per_group is the number of MPI tasks that will be set aside for writing model output, and it is a setting dependent on the domain you have selected. You can find and edit the value of this variable in the file regional_workflow/ush/set_predef_grid_params.sh.





	RUN_CMD_UTILS="mpirun -np 4"
	This is the run command for MPI-enabled pre-processing utilities. Depending on your machine and your MPI installation, you may need to use a different command for launching an MPI-enabled executable.



	RUN_CMD_POST="mpirun -np 1"
	This is the same as RUN_CMD_UTILS but for UPP.



	RUN_CMD_FCST='mpirun -np ${PE_MEMBER01}'
	This is the run command for the weather model. It is strongly recommended that you use the variable ${PE_MEMBER01} here, which is calculated within the workflow generation script (based on the layout and write tasks described above) and is the number of MPI tasks that the weather model will expect to run with. Running the weather model with a different number of MPI tasks than the workflow has been set up for can lead to segmentation faults and other errors.  It is also important to use single quotes here (or escape the “$” character) so that PE_MEMBER01 is not referenced until runtime, since it is not defined at the beginning of the workflow generation script.



	FIXgsm=${WORKDIR}/data/fix_am
	The location of the fix_am static files. This and the following two static data sets will need to be downloaded to your machine, as described in Section 7.3.1.



	TOPO_DIR=${WORKDIR}/data/fix_orog
	Location of fix_orog static files



	SFC_CLIMO_INPUT_DIR=${WORKDIR}/data/fix_sfc_climo
	Location of climo_fields_netcdf static files





Once you are happy with your settings in config.sh, it is time to run the workflow and move to the experiment directory (that is printed at the end of the script’s execution):

./generate_FV3LAM_wflow.sh
export EXPTDIR="your experiment directory"
cd $EXPTDIR





From here, you can run each individual task of the UFS SRW App using the provided run scripts:

cp ${WORKDIR}/ufs-srweather-app/regional_workflow/ush/wrappers/*sh .
cp ${WORKDIR}/ufs-srweather-app/regional_workflow/ush/wrappers/README.md .





The README.md file will contain instructions on the order that each script should be run in. An example of wallclock times for each task for an example run (2017 Macbook Pro, macOS Catalina, 25km CONUS domain, 48hr forecast) is listed in Table 8.1.


Table 8.1 Example wallclock times for each workflow task.







	UFS Component

	Script Name

	Num.
Cores

	Wall
time





	UFS_UTILS

	./run_get_ics.sh

	n/a

	3 s



	UFS_UTILS

	./run_get_lbcs.sh

	n/a

	3 s



	UFS_UTILS

	./run_make_grid.sh

	n/a

	9 s



	UFS_UTILS

	./run_make_orog.sh

	4

	1 m



	UFS_UTILS

	./run_make_sfc_climo.sh

	4

	27 m



	UFS_UTILS

	./run_make_ics.sh

	4

	5 m



	UFS_UTILS

	./run_make_lbcs.sh

	4

	5 m



	ufs-weather-model

	./run_fcst.sh

	6

	1h 40 m



	EMC_post

	./run_post.sh

	1

	7 m









8.6. Running on a New Platform with Rocoto Workflow Manager

All official HPC platforms for the UFS SRW App release make use of the Rocoto workflow management software for running experiments. If you would like to use the Rocoto workflow manager on a new machine, you will have to make modifications to the scripts in the regional_workflow repository. The easiest way to do this is to search the files in the regional_workflow/scripts and regional_workflow/ush directories for an existing platform name (e.g. CHEYENNE) and add a stanza for your own unique machine (e.g. MYMACHINE). As an example, here is a segment of code from regional_workflow/ush/setup.sh, where the highlighted text is an example of the kind of change you will need to make:

...
  "CHEYENNE")
    WORKFLOW_MANAGER="rocoto"
    NCORES_PER_NODE=36
    SCHED="${SCHED:-pbspro}"
    QUEUE_DEFAULT=${QUEUE_DEFAULT:-"regular"}
    QUEUE_HPSS=${QUEUE_HPSS:-"regular"}
    QUEUE_FCST=${QUEUE_FCST:-"regular"}
    ;;

  "MYMACHINE")
    WORKFLOW_MANAGER="rocoto"
    NCORES_PER_NODE=your_machine_cores_per_node
    SCHED="${SCHED:-your_machine_scheduler}"
    QUEUE_DEFAULT=${QUEUE_DEFAULT:-"your_machine_queue_name"}
    QUEUE_HPSS=${QUEUE_HPSS:-"your_machine_queue_name"}
    QUEUE_FCST=${QUEUE_FCST:-"your_machine_queue_name"}
    ;;

   "STAMPEDE")
     WORKFLOW_MANAGER="rocoto"
...





You will also need to add MYMACHINE to the list of valid machine names in regional_workflow/ush/valid_param_vals.sh. The minimum list of files that will need to be modified in this way are as follows (all in the regional_workflow repository):


	scripts/exregional_run_post.sh, line 131


	scripts/exregional_make_sfc_climo.sh, line 162


	scripts/exregional_make_lbcs.sh, line 114


	scripts/exregional_make_orog.sh, line 147


	scripts/exregional_make_grid.sh, line 145


	scripts/exregional_run_fcst.sh, line 140


	scripts/exregional_make_ics.sh, line 114


	ush/setup.sh, lines 431 and 742


	ush/launch_FV3LAM_wflow.sh, line 104


	ush/get_extrn_mdl_file_dir_info.sh, many lines, starting around line 589


	ush/valid_param_vals.sh, line 3


	ush/load_modules_run_task.sh, line 126


	ush/set_extrn_mdl_params.sh, many lines, starting around line 61




The line numbers may differ slightly given future bug fixes. Additionally, you may need to make further changes depending on the exact setup of your machine and Rocoto installation. Information about installing and configuring Rocoto on your machine can be found in the Rocoto Github repository: https://github.com/christopherwharrop/rocoto




8.7. Software/Operating System Requirements

Those requirements highlighted in bold are included in the NCEPLIBS-external (https://github.com/NOAA-EMC/NCEPLIBS-external) package.

Minimum platform requirements for the UFS SRW Application and NCEPLIBS:


	POSIX-compliant UNIX-style operating system


	>40 GB disk space



	18 GB input data from GFS, RAP, and HRRR for Graduate Student Test


	6 GB for NCEPLIBS-external and NCEPLIBS full installation


	1 GB for ufs-srweather-app installation


	11 GB for 48hr forecast on CONUS 25km domain









	4GB memory (CONUS 25km domain)


	Fortran compiler with full Fortran 2008 standard support


	C and C++ compiler


	Python v3.6+, including prerequisite packages jinja2, pyyaml and f90nml


	Perl 5


	git v1.8+


	MPI (MPICH, OpenMPI, or other implementation)


	wgrib2


	CMake v3.12+


	Software libraries



	netCDF (C and Fortran libraries)


	HDF5


	ESMF 8.0.0


	Jasper


	libJPG


	libPNG


	zlib











macOS-specific prerequisites:


	brew install wget


	brew install cmake


	brew install coreutils


	brew install pkg-config


	brew install gnu-sed




Optional but recommended prerequisites:


	Conda for installing/managing Python packages


	Bash v4+


	Rocoto Workflow Management System (1.3.1)


	CMake v3.15+


	Python packages scipy, matplotlib, pygrib, cartopy, and pillow for graphics










            

          

      

      

    

  

    
      
          
            
  
9. Workflow End-to-End (WE2E) Tests

The SRW Application’s experiment generation system contains a set of end-to-end tests that
exercise various configurations of that system as well as those of the pre-processing,
UFS Weather Model, and UPP post-processing codes. The script to run these tests is named
run_experiments.sh and is located in the directory ufs-srweather-app/regional_workflow/tests.
A complete list of the available tests can be found in baselines_list.txt in that directory.
This list is extensive; it is not recommended to run all of the tests as some are computationally
expensive.  A subset of the tests supported for this release of the SRW Application can be found
in the file testlist.release_public_v1.txt.

The base experiment configuration file for each test is located in the baseline_configs
subdirectory.  Each file is named config.${expt_name}.sh, where ${expt_name} is the
name of the corresponding test configuration. These base configuration files are subsets of
the full config.sh experiment configuration file used in Section 2.4.1
and described in Section 4.5.2.  For each test that the user wants
to run, the run_experiments.sh script reads in its base configuration file and generates from
it a full config.sh file (a copy of which is placed in the experiment directory for the test).

Since run_experiments.sh calls generate_FV3LAM_wflow.sh for each test to be run, the
Python modules required for experiment generation must be loaded before run_experiments.sh
can be called.  See Section 2.4.2 for information on loading the Python
environment on supported platforms.  Note also that run_experiments.sh assumes that all of
the executables have been built.

The user specifies the set of test configurations that the run_experiments.sh script will
run by creating a text file, say expts_list.txt, that contains a list of tests (one per line)
and passing the name of that file to the script.  For each test in the file, run_experiments.sh
will generate an experiment directory and, by default, will continuously (re)launch its workflow
by inserting a new cron job in the user’s cron table.  This cron job calls the workflow launch script
launch_FV3LAM_wflow.sh located in the experiment directory until the workflow either
completes successfully (i.e. all tasks are successful) or fails (i.e. at least one task fails).
The cron job is then removed from the user’s cron table.

The script run_experiments.sh accepts the command line arguments shown in
Table 9.1.


Table 9.1 Command line arguments for the WE2E testing script run_experiments.sh.






	Command Line Argument

	Description

	Optional





	expts_file

	Name of the file containing the list of tests to run.  If expts_file is the absolute path
to a file, it is used as is.  If it is a relative path (including just a file name), it is assumed
to be given relative to the path from which this script is called.

	No



	machine

	Machine name

	No



	account

	HPC account to use

	No



	use_cron_to_relaunch

	Flag that specifies whether or not to use a cron job to continuously relaunch the workflow

	Yes.  Default value is TRUE (set in run_experiments.sh).



	cron_relaunch_intvl_mnts

	Frequency (in minutes) with which cron will relaunch the workflow

	Used only if use_cron_to_relaunch is set to TRUE.  Default value is “02” (set in run_experiments.sh).






For example, to run the tests named grid_RRFS_CONUS_25km_ics_FV3GFS_lbcs_FV3GFS_suite_GFS_v15p2
and grid_RRFS_CONUS_25km_ics_HRRR_lbcs_RAP_suite_RRFS_v1alpha on Cheyenne, first create the file
expts_list.txt containing the following lines:

grid_RRFS_CONUS_25km_ics_FV3GFS_lbcs_FV3GFS_suite_GFS_v15p2
grid_RRFS_CONUS_25km_ics_HRRR_lbcs_RAP_suite_RRFS_v1alpha





Then, from the ufs-srweather-app/regional_workflow/tests directory, issue the following command:

./run_experiments.sh expts_file="expts_list.txt" machine=cheyenne account="account_name"





where account_name should be replaced by the account to which to charge the core-hours used
by the tests.  Running this command will automatically insert an entry into the user’s crontab
that regularly (re)launches the workflow.  The experiment directories will be created under
ufs-srweather-app/../expt_dirs, and the name of each experiment directory will be identical
to the name of the corresponding test.

To see if a test completed successfully, look at the end of the log.launch_FV3LAM_wflow file (which
is the log file that launch_FV3LAM_wflow.sh appends to every time it is called) located in the
experiment directory for that test:

Summary of workflow status:
~~~~~~~~~~~~~~~~~~~~~~~~~~

 1 out of 1 cycles completed.
 Workflow status: SUCCESS

==
End of output from script "launch_FV3LAM_wflow.sh".
==

Use of cron for all tests to be run by run_experiments.sh can be turned off by instead issuing
the following command:

./run_experiments.sh expts_file="expts_list.txt" machine=cheyenne account="account_name" use_cron_to_relaunch=FALSE

In this case, the experiment directories for the tests will be created, but their workflows will
not be (re)launched. For each test, the user will have to go into the experiment directory and
either manually call the launch_FV3LAM_wflow.sh script or use the Rocoto commands described
in Chapter 12 to (re)launch the workflow. Note that if using the Rocoto
commands directly, the log file log.launch_FV3LAM_wflow will not be created; in this case,
the status of the workflow can be checked using the rocotostat command (see Chapter 12).

10. Graphics Generation

Two Python plotting scripts are provided to generate plots from the FV3-LAM post-processed GRIB2
output over the CONUS for a number of variables, including:

	2-m temperature

	2-m dew point temperature

	10-m winds

	500 hPa heights, winds, and vorticity

	250 hPa winds

	Accumulated precipitation

	Composite reflectivity

	Surface-based CAPE/CIN

	Max/Min 2-5 km updraft helicity

	Sea level pressure (SLP)

The Python scripts are located under ufs-srweather-app/regional_workflow/ush/Python.
The script plot_allvars.py plots the output from a single cycle within an experiment, while
the script plot_allvars_diff.py plots the difference between the same cycle from two different
experiments (e.g. the experiments may differ in some aspect such as the physics suite used). If
plotting the difference, the two experiments must be on the same domain and available for
the same cycle starting date/time and forecast hours.

The Python scripts require a cycle starting date/time in YYYYMMDDHH format, a starting forecast
hour, an ending forecast hour, a forecast hour increment, the paths to one or two experiment directories,
and a path to the directory where the Cartopy Natural Earth shape files are located.
The full set of Cartopy shape files can be downloaded at https://www.naturalearthdata.com/downloads/.
For convenience, the small subset of files required for these Python scripts can be obtained from the
EMC ftp data repository [https://ftp.emc.ncep.noaa.gov/EIB/UFS/SRW/v1p0/natural_earth/natural_earth_ufs-srw-release-v1.0.0.tar.gz]
or from AWS cloud storage [https://ufs-data.s3.amazonaws.com/public_release/ufs-srweather-app-v1.0.0/natural_earth/natural_earth_ufs-srw-release-v1.0.0.tar.gz].
In addition, the Cartopy shape files are available on a number of Level 1 platforms in the following
locations:

On Cheyenne:

/glade/p/ral/jntp/UFS_SRW_app/tools/NaturalEarth

On Hera:

/scratch2/BMC/det/UFS_SRW_app/v1p0/fix_files/NaturalEarth

On Jet:

/lfs4/BMC/wrfruc/FV3-LAM/NaturalEarth

On Orion:

/work/noaa/gsd-fv3-dev/UFS_SRW_App/v1p0/fix_files/NaturalEarth

On Gaea:

/lustre/f2/pdata/esrl/gsd/ufs/NaturalEarth

The medium scale (1:50m) cultural and physical shapefiles are used to create coastlines and other
geopolitical borders on the map. Cartopy provides the ‘background_img()’ method to add background
images in a convenient way. The default scale (resolution) of background attributes in the Python
scripts is 1:50m Natural Earth I with Shaded Relief and Water, which should be sufficient for most
regional applications.

The appropriate environment must be loaded to run the scripts, which require Python 3 with
the scipy, matplotlib, pygrib, cartopy, and pillow packages. This Python environment has already
been set up on Level 1 platforms and can be activated as follows:

On Cheyenne:

module load ncarenv
ncar_pylib /glade/p/ral/jntp/UFS_SRW_app/ncar_pylib/python_graphics

On Hera and Jet:

module use -a /contrib/miniconda3/modulefiles
module load miniconda3
conda activate pygraf

On Orion:

module use -a /apps/contrib/miniconda3-noaa-gsl/modulefiles
module load miniconda3
conda activate pygraf

On Gaea:

module use /lustre/f2/pdata/esrl/gsd/contrib/modulefiles
module load miniconda3/4.8.3-regional-workflow

Note

If using one of the batch submission scripts described below, the user does not need to
manually load an environment because the scripts perform this task.

10.1. Plotting output from one experiment

Before generating plots, it is convenient to change location to the directory containing the plotting
scripts:

cd ufs-srweather-app/regional_workflow/ush/Python

To generate plots for a single cycle, the plot_allvars.py script must be called with the
following six command line arguments:

	Cycle date/time (CDATE) in YYYYMMDDHH format

	Starting forecast hour

	Ending forecast hour

	Forecast hour increment

	The top level of the experiment directory EXPTDIR containing the post-processed data. The script will look for the data files in the directory EXPTDIR/CDATE/postprd.

	The base directory CARTOPY_DIR of the cartopy shapefiles. The script will look for the shape files (*.shp) in the directory CARTOPY_DIR/shapefiles/natural_earth/cultural.

An example of plotting output from a cycle generated using the sample experiment/workflow
configuration in the config.community.sh script (which uses the GFSv15p2 suite definition file)
is as follows:

python plot_allvars.py 2019061500 6 48 6 /path-to/expt_dirs/test_CONUS_25km_GFSv15p2 /path-to/NaturalEarth

The output files (in .png format) will be located in the directory EXPTDIR/CDATE/postprd,
where in this case EXPTDIR is /path-to/expt_dirs/test_CONUS_25km_GFSv15p2 and CDATE
is 2019061500.

10.2. Plotting differences from two experiments

To generate difference plots, the plot_allvars_diff.py script must be called with the following
seven command line arguments:

	Cycle date/time (CDATE) in YYYYMMDDHH format

	Starting forecast hour

	Ending forecast hour

	Forecast hour increment

	The top level of the first experiment directory EXPTDIR1 containing the first set of post-processed data. The script will look for the data files in the directory EXPTDIR1/CDATE/postprd.

	The top level of the first experiment directory EXPTDIR2 containing the second set of post-processed data. The script will look for the data files in the directory EXPTDIR2/CDATE/postprd.

	The base directory CARTOPY_DIR of the cartopy shapefiles. The script will look for the shape files (*.shp) in the directory CARTOPY_DIR/shapefiles/natural_earth/cultural.

An example of plotting differences from two experiments for the same date and predefined domain where one uses
the “FV3_GFS_v15p2” suite definition file (SDF) and one using the “FV3_RRFS_v1alpha” SDF is as follows:

python plot_allvars_diff.py 2019061518 6 18 3 /path-to/expt_dirs1/test_CONUS_3km_GFSv15p2 /path-to/expt_dirs2/test_CONUS_3km_RRFSv1alpha /path-to/NaturalEarth

In this case, the output png files will be located in the directory EXPTDIR1/CDATE/postprd.

10.3. Submitting plotting scripts through a batch system

If the Python scripts are being used to create plots of multiple forecast lead times and forecast
variables, then you may need to submit them to the batch system. Example scripts are provided called
sq_job.sh and sq_job_diff.sh for use on a platform such as Hera that uses the Slurm
job scheduler or qsub_job.sh and qsub_job_diff.sh for use on a platform such as
Cheyenne that uses PBS as the job scheduler. Examples of these scripts are located under
ufs-srweather-app/regional_workflow/ush/Python and can be used as a starting point to create a batch script
for your platform/job scheduler of use.

At a minimum, the account should be set appropriately prior to job submission:

#SBATCH --account=an_account

Depending on the platform you are running on, you may also need to adjust the settings to use
the correct Python environment and path to the shape files.

When using these batch scripts, several environment variables must be set prior to submission.
If plotting output from a single cycle, the variables to set are HOMErrfs and EXPTDIR.
In this case, if the user’s login shell is csh/tcsh, these variables can be set as follows:

setenv HOMErrfs /path-to/ufs-srweather-app/regional_workflow
setenv EXPTDIR /path-to/experiment/directory

If the user’s login shell is bash, they can be set as follows:

export HOMErrfs=/path-to/ufs-srweather-app/regional_workflow
export EXPTDIR=/path-to/experiment/directory

If plotting the difference between the same cycle from two different experiments, the variables
to set are HOMErrfs, EXPTDIR1. and EXPTDIR2. In this case, if the user’s login shell
is csh/tcsh, these variables can be set as follows:

setenv HOMErrfs /path-to/ufs-srweather-app/regional_workflow
setenv EXPTDIR1 /path-to/experiment/directory1
setenv EXPTDIR2 /path-to/experiment/directory2

If the user’s login shell is bash, they can be set as follows:

export HOMErrfs=/path-to/ufs-srweather-app/regional_workflow
export EXPTDIR1=/path-to/experiment/directory1
export EXPTDIR2=/path-to/experiment/directory2

In addition, the variables CDATE, FCST_START, FCST_END, and FCST_INC in the batch
scripts can be modified depending on the user’s needs. By default, CDATE is set as follows
in the batch scripts:

export CDATE=${DATE_FIRST_CYCL}${CYCL_HRS}

This sets CDATE to the first cycle in the set of cycles that the experiment has run. If the
experiment contains multiple cycles and the user wants to plot output from a cycle other than
the very first one, CDATE in the batch scripts will have to be set to the specific YYYYMMDDHH
value for that cycle. Also, to plot hourly forecast output, FCST_INC should be set to 1; to
plot only a subset of the output hours, FCST_START, FCST_END, and FCST_INC must be
set accordingly, e.g. to generate plots for every 6th forecast hour starting with forecast hour 6
and ending with the last forecast hour, use

export FCST_START=6
export FCST_END=${FCST_LEN_HRS}
export FCST_INC=6

The scripts must be submitted using the command appropriate
for the job scheduler used on your platform. For example, on Hera,
sq_job.sh can be submitted as follows:

sbatch sq_job.sh

On Cheyenne, qsub_job.sh can be submitted as follows:

qsub qsub_job.sh

11. FAQ

11.1. How do I turn On/Off the Cycle-Independent Workflow Tasks

The first three pre-processing tasks make_grid, make_orog, and make_sfc_climo
are cycle-independent, meaning that they only need to be run once per experiment. If the
grid, orography, and surface climatology files that these tasks generate are already
available (e.g. from a previous experiment that used the same grid as the current), then
these tasks can be skipped by having the workflow use those pre-generated files. This
can be done by adding the following lines to the config.sh script before running
the generate_FV3LAM_wflow.sh script:

RUN_TASK_MAKE_GRID=”FALSE”
GRID_DIR=”/path/to/directory/containing/grid/files”
RUN_TASK_MAKE_OROG=”FALSE”
OROG_DIR=”/path/to/directory/containing/orography/files”
RUN_TASK_MAKE_SFC_CLIMO=”FALSE”
SFC_CLIMO_DIR=”/path/to/directory/containing/surface/climatology/files”

The RUN_TASK_MAKE_GRID, RUN_TASK_MAKE_OROG, and RUN_TASK_MAKE_SFC_CLIMO flags
disable their respective tasks, and GRID_DIR, OROG_DIR, and SFC_CLIMO_DIR
specify the directories in which the workflow can find the pre-generated grid, orography,
and surface climatology files, respectively (these directories may be the same, i.e. all
three sets of files may be placed in the same location). By default, the RUN_TASK_MAKE_...
flags are set to TRUE in config_defaults.sh, i.e. the workflow will by default
run the make_grid, make_orog, and make_sfc_climo tasks.

11.2. How do I define an experiment name?

The name of the experiment is set in the config.sh file using the variable EXPT_SUBDIR.
See Section 2.4.1 for more details.

11.3. How do I change the Suite Definition File (SDF)?

The SDF is set in the config.sh file using the variable CCPP_PHYS_SUITE. When the
generate_FV3LAM_wflow.sh script is run, the SDF file is copied from its location in the forecast
model directory to the experiment directory EXPTDIR.

11.4. How do I restart a DEAD task?

On platforms that utilize Rocoto workflow software (such as NCAR’s Cheyenne machine), sometimes if
something goes wrong with the workflow a task may end up in the DEAD state:

rocotostat -w FV3SAR_wflow.xml -d FV3SAR_wflow.db -v 10
 CYCLE TASK JOBID STATE EXIT STATUS TRIES DURATION
===
201905200000 make_grid 9443237 QUEUED - 0 0.0
201905200000 make_orog - - - - -
201905200000 make_sfc_climo - - - - -
201905200000 get_extrn_ics 9443293 DEAD 256 3 5.0

This means that the dead task has not completed successfully, so the workflow has stopped. Once the issue
has been identified and fixed (by referencing the log files), the failed task can re-run using the rocotorewind
command:

rocotorewind -w FV3SAR_wflow.xml -d FV3SAR_wflow.db -v 10 -c 201905200000 -t get_extrn_ics

where -c specifies the cycle date (first column of rocotostat output) and -t represents the task name
(second column of rocotostat output). After using rocotorewind, the next time rocotorun is used to
advance the workflow, the job will be resubmitted.

11.5. How do I change the grid?

To change the predefined grid, you need to modify the PREDEF_GRID_NAME variable in the
config.sh script which the user has created to generate an experiment configuration and workflow.
Users can choose from one of three predefined grids for the SRW Application:

RRFS_CONUS_3km
RRFS_CONUS_13km
RRFS_CONUS_25km

An option also exists to create a user-defined grid, with information available in
Chapter 6.

12. Additional Rocoto Information

The tasks in the SRW Application (Table 4.6) are typically run using
the Rocoto Workflow Manager. Rocoto is a Ruby program that interfaces with the batch system on an
HPC system to run and manage dependencies between the tasks. Rocoto submits jobs to the HPC batch
system as the task dependencies allow, and runs one instance of the workflow for a set of user-defined
cycles. More information on Rocoto can be found at https://github.com/christopherwharrop/rocoto/wiki/documentation.

The SRW App workflow is defined in a Jinja-enabled Rocoto XML template called FV3LAM_wflow.xml,
which resides in the regional_workflow/ufs/templates directory. When the generate_FV3LAM_wflow.sh
script is run, the fill_jinja_template.py script is called, and the parameters in the template file
are filled in. The completed file contains the workflow task names, parameters needed by the job scheduler,
and task interdependencies. The generated XML file is then copied to the experiment directory:
$EXPTDIR/FV3LAM_wflow.xml.

There are a number of Rocoto commands available to run and monitor the workflow and can be found in the
complete Rocoto documentation [https://github.com/christopherwharrop/rocoto/wiki/documentation].
Descriptions and examples of commonly used commands are discussed below.

12.1. rocotorun

The rocotorun command is used to run the workflow by submitting tasks to the batch system. It will
automatically resubmit failed tasks and can recover from system outages without user intervention.
An example is:

rocotorun -w /path/to/workflow/xml/file -d /path/to/workflow/database/file -v 10

where

	-w specifies the name of the workflow definition file. This must be an XML file.

	-d specifies the name of the database file that is to be used to store the state of the workflow.
The database file is a binary file created and used only by Rocoto and need not exist prior to the first
time the command is run.

	-v (optional) specified level of verbosity. If no level is specified, a level of 1 is used.

From the $EXPTDIR directory, the rocotorun command for the workflow would be:

rocotorun -w FV3LAM_wflow.xml -d FV3LAM_wflow.db

It is important to note that the rocotorun process is iterative; the command must be executed
many times before the entire workflow is completed, usually every 2-10 minutes. This command can be
placed in the user’s crontab and cron will call it with a specified frequency. More information on
this command can be found at https://github.com/christopherwharrop/rocoto/wiki/documentation.

The first time the rocotorun command is executed for a workflow, the files FV3LAM_wflow.db and
FV3LAM_wflow_lock.db are created. There is usually no need for the user to modify these files.
Each time this command is executed, the last known state of the workflow is read from the FV3LAM_wflow.db
file, the batch system is queried, jobs are submitted for tasks whose dependencies have been satisfied,
and the current state of the workflow is saved in FV3LAM_wflow.db. If there is a need to relaunch
the workflow from scratch, both database files can be deleted, and the workflow can be run using rocotorun
or the launch script launch_FV3LAM_wflow.sh (executed multiple times as described above).

12.2. rocotostat

rocotostat is a tool for querying the status of tasks in an active Rocoto workflow. Once the
workflow has been started with the rocotorun command, Rocoto can also check the status of the
workflow using the rocotostat command:

rocotostat -w /path/to/workflow/xml/file -d /path/to/workflow/database/file

Executing this command will generate a workflow status table similar to the following:

 CYCLE TASK JOBID STATE EXIT STATUS TRIES DURATION
===
201907010000 make_grid 175805 QUEUED - 0 0.0
201907010000 make_orog - - - - -
201907010000 make_sfc_climo - - - - -
201907010000 get_extrn_ics druby://hfe01:36261 SUBMITTING - 0 0.0
201907010000 get_extrn_lbcs druby://hfe01:36261 SUBMITTING - 0 0.0
201907010000 make_ics - - - - -
201907010000 make_lbcs - - - - -
201907010000 run_fcst - - - - -
201907010000 run_post_f000 - - - - -
201907010000 run_post_f001 - - - - -
201907010000 run_post_f002 - - - - -
201907010000 run_post_f003 - - - - -
201907010000 run_post_f004 - - - - -
201907010000 run_post_f005 - - - - -
201907010000 run_post_f006 - - - - -

This table indicates that the make_grid task was sent to the batch system and is now queued, while
the get_extrn_ics and get_extrn_lbcs tasks for the 201907010000 cycle are in the process of being
submitted to the batch system.

Note that issuing a rocotostat command without an intervening rocotorun command will not result in an
updated workflow status table; it will print out the same table. It is the rocotorun command that updates
the workflow database file (in this case FV3LAM_wflow.db, located in $EXPTDIR); the rocotostat command
reads the database file and prints the table to the screen. To see an updated table, the rocotorun command
must be executed followed by the rocotostat command.

After issuing the rocotorun command several times (over the course of several minutes or longer, depending
on your grid size and computational resources), the output of the rocotostat command should look like this:

 CYCLE TASK JOBID STATE EXIT STATUS TRIES DURATION
==
201907010000 make_grid 175805 SUCCEEDED 0 1 10.0
201907010000 make_orog 175810 SUCCEEDED 0 1 27.0
201907010000 make_sfc_climo 175822 SUCCEEDED 0 1 38.0
201907010000 get_extrn_ics 175806 SUCCEEDED 0 1 37.0
201907010000 get_extrn_lbcs 175807 SUCCEEDED 0 1 53.0
201907010000 make_ics 175825 SUCCEEDED 0 1 99.0
201907010000 make_lbcs 175826 SUCCEEDED 0 1 90.0
201907010000 run_fcst 175937 RUNNING - 0 0.0
201907010000 run_post_f000 - - - - -
201907010000 run_post_f001 - - - - -
201907010000 run_post_f002 - - - - -
201907010000 run_post_f003 - - - - -
201907010000 run_post_f004 - - - - -
201907010000 run_post_f005 - - - - -
201907010000 run_post_f006 - - - - -

When the workflow runs to completion, all tasks will be marked as SUCCEEDED. The log files from the tasks
are located in $EXPTDIR/log. If any tasks fail, the corresponding log file can be checked for error
messages. Optional arguments for the rocotostat command can be found at https://github.com/christopherwharrop/rocoto/wiki/documentation.

12.3. rocotocheck

Sometimes, issuing a rocotorun command will not cause the next task to launch. rocotocheck is a
tool that can be used to query detailed information about a task or cycle in the Rocoto workflow. To
determine the cause of a particular task not being submitted, the rocotocheck command can be used
from the $EXPTDIR directory as follows:

rocotocheck -w /path/to/workflow/xml/file -d /path/to/workflow/database/ file -c YYYYMMDDHHMM -t taskname

where

	-c is the cycle to query

	-t is the task name

A specific example is:

rocotocheck -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10 -c 201907010000 -t run_fcst

This will result in output similar to the following:

Task: run_fcst
 account: gsd-fv3
 command: /scratch2/BMC/det/$USER/ufs-srweather-app/regional_workflow/ush/load_modules_run_task.sh "run_fcst" "/scratch2/BMC/det/$USER/ufs-srweather-app/regional_workflow/jobs/JREGIONAL_RUN_FCST"
 cores: 24
 final: false
 jobname: run_FV3
 join: /scratch2/BMC/det/$USER/expt_dirs/test_community/log/run_fcst_2019070100.log
 maxtries: 3
 name: run_fcst
 nodes: 1:ppn=24
 queue: batch
 throttle: 9999999
 walltime: 04:30:00
 environment
 CDATE ==> 2019070100
 CYCLE_DIR ==> /scratch2/BMC/det/$USER/UFS_CAM/expt_dirs/test_community/2019070100
 PDY ==> 20190701
 SCRIPT_VAR_DEFNS_FP ==> /scratch2/BMC/det/$USER/expt_dirs/test_community/var_defns.sh
 dependencies
 AND is satisfied
 make_ICS_surf_LBC0 of cycle 201907010000 is SUCCEEDED
 make_LBC1_to_LBCN of cycle 201907010000 is SUCCEEDED

Cycle: 201907010000
 Valid for this task: YES
 State: active
 Activated: 2019-10-29 18:13:10 UTC
 Completed: -
 Expired: -

Job: 513615
 State: DEAD (FAILED)
 Exit Status: 1
 Tries: 3
 Unknown count: 0
 Duration: 58.0

This shows that although all dependencies for this task are satisfied (see the dependencies section, highlighted above),
it cannot run because its maxtries value (highlighted) is 3. Rocoto will attempt to launch it at most 3 times,
and it has already been tried 3 times (the Tries value, also highlighted).

The output of the rocotocheck command is often useful in determining whether the dependencies for a given task
have been met. If not, the dependencies section in the output of rocotocheck will indicate this by stating that a
dependency “is NOT satisfied”.

12.4. rocotorewind

rocotorewind is a tool that attempts to undo the effects of running a task and is commonly used to rerun part
of a workflow that has failed. If a task fails to run (the STATE is DEAD), and needs to be restarted, the rocotorewind
command will rerun tasks in the workflow. The command line options are the same as those described in the rocotocheck
section 12.3, and the general usage statement looks like:

rocotorewind -w /path/to/workflow/xml/file -d /path/to/workflow/database/ file -c YYYYMMDDHHMM -t taskname

Running this command will edit the Rocoto database file FV3LAM_wflow.db to remove evidence that the job has been run.
rocotorewind is recommended over rocotoboot for restarting a task, since rocotoboot will force a specific
task to run, ignoring all dependencies and throttle limits. The throttle limit, denoted by the variable cyclethrottle
in the FV3LAM_wflow.xml file, limits how many cycles can be active at one time. An example of how to use this
command to rerun the forecast task from $EXPTDIR is:

rocotorewind -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10 -c 201907010000 -t run_fcst

12.5. rocotoboot

rocotoboot will force a specific task of a cycle in a Rocoto workflow to run. All dependencies and throttle
limits are ignored, and it is generally recommended to use rocotorewind instead. An example of how to
use this command to rerun the make_ics task from $EXPTDIR is:

rocotoboot -w FV3LAM_wflow.xml -d FV3LAM_wflow.db -v 10 -c 201907010000 -t make_ics

13. Glossary

	CCPP
	A forecast-model agnostic, vetted collection of codes containing atmospheric physical
parameterizations and suites of parameterizations for use in Numerical Weather Prediction
(NWP) along with a framework that connects the physics to the host forecast model.

	chgres_cube
	The preprocessing software used to create initial and boundary condition files to
“coldstart” the forecast model.

	FV3
	The Finite-Volume Cubed-Sphere dynamical core (dycore). Developed at NOAA’s Geophysical
Fluid Dynamics Laboratory (GFDL), it is a scalable and flexible dycore capable of both
hydrostatic and non-hydrostatic atmospheric simulations. It is the dycore used in the
UFS Weather Model.

	GRIB2
	The second version of the World Meterological Organization’s (WMO) standard for distributing gridded data.

	NCEP
	National Centers for Environmental Prediction, an arm of the National Weather Service,
consisting of nine centers. More information can be found at https://www.ncep.noaa.gov.

	NCEPLIBS
	The software libraries created and maintained by NCEP that are required for running
chgres_cube, the UFS Weather Model, and UPP.

	NCEPLIBS-external
	A collection of third-party libraries required to build NCEPLIBS, chgres_cube,
the UFS Weather Model, and UPP.

	NCL
	An interpreted programming language designed specifically for scientific data analysis and
visualization. More information can be found at https://www.ncl.ucar.edu.

	NEMS
	The NOAA Environmental Modeling System is a common modeling framework whose purpose is
to streamline components of operational modeling suites at NCEP.

	NEMSIO
	A binary format for atmospheric model output from NCEP’s Global Forecast System (GFS).

	UFS
	The Unified Forecast System is a community-based, coupled comprehensive Earth modeling
system consisting of several applications (apps). These apps span regional to global
domains and sub-hourly to seasonal time scales. The UFS is designed to support the Weather
Enterprise and to be the source system for NOAA’s operational numerical weather prediction
applications. More information can be found at http://ufs-dev.rap.ucar.edu/index.html.

	UFS_UTILS
	A collection of codes used by multiple UFS apps (e.g. the UFS Short-Range Weather App,
the UFS Medium-Range Weather App). The grid, orography, surface climatology, and initial
and boundary condition generation codes used by the UFS Short-Range Weather App are all
part of this collection.

	UPP
	The Unified Post Processor is software developed at NCEP and used operationally to
post-process raw output from a variety of NCEP’s NWP models, including the FV3.

	Weather Model
	A prognostic model that can be used for short- and medium-range research and
operational forecasts. It can be an atmosphere-only model or an atmospheric
model coupled with one or more additional components, such as a wave or ocean model.

Index

 C
 | F
 | G
 | N
 | U
 | W

C

 	
 	CCPP

 	
 	chgres_cube

F

 	
 	FV3

G

 	
 	GRIB2

N

 	
 	NCEP

 	NCEPLIBS

 	NCEPLIBS-external

 	
 	NCL

 	NEMS

 	NEMSIO

U

 	
 	UFS

 	
 	UFS_UTILS

 	UPP

W

 	
 	Weather Model

 _static/plus.png

_static/file.png

_static/minus.png

_images/FV3LAM_wflow_input_path.png
Migratory Route of the Input Files

Qg sh/confssh]

Set[CCPP_PHYS_SUITE]

Setthe template file paths:
* DIAG_TABLE_TMPL_FP={TMPL_DIR}/diag_table.[CCPP_PHYS_SUITE]

~ FIELD_TABLE_TMPL_FP={TMPL_DIR}/field_table.[CCPP_PHYS_SUITE]

* MODEL_CONFIG_TMPL_FP=(TMPL_DIR}/model_configure.(CCPP_PHYS_SUITE]
« NEMS_CONFIG_TMPL_FP=(TMPL_DIR)/nemsconfigure

* FV3_NML_BASE_FP=(TMPL_DIR)/input.nml.FV3

13

* Copy 'FIELD_TABLE_TMPL_FP"and ‘NEMS_CONFIG_TMPL_FP'to
(EXPTDIR}/field_table’ and(EXPTOIR}/nems_configure'.
+ Set‘Input.nmI” with ‘input.nmLFV3"and "FV3.inputymi’ and move it to (EXPTDIR).

Jscripts/exregional_run_fcst.sh

* Link feld_table’, nems.configure’, and ‘iput o’ to {CYCLE_DIRY.

+ Copy ‘DIAG_TABLE_TMPL_FP’and ‘MODEL_CONFIG_TMPL_FP'to
(CYCLE_DIR)/diag_table’ and ‘(CYCLE_DIR}/model_configure.

* Update variables with (EXPTOIR}/var_defn.sh'

_)

_images/FV3LAM_wflow_overall.png
Regional
workflow
tem built?

Pre-defined
grid exists?

YES

Modify ‘config.sh'

Python.
environment
loaded?

NO

Generate a regional workflow.

2

Run the regional workflow

Clone from Gitub

Run checkout_externals”

Run cmake/make.

Define gridparametersin
‘set_prede_grid_param.sh'

2

Modify “alid_param_ls.sh"

Load modules and activate
regional_worklow

‘generats_FV3LAM_wlowsh'

“launch_FV3LAM_wlow.sh’

_images/FV3LAM_wflow_flowchart.png
'WORKFLOW ({EXPTDIR}/FV3LAM_wflow.xml')

TRUE,

MAKE_GRID

MAKE_OROG “" ‘exregional_make_grid.sh
MAKE_SFC_CLIMO [exresonal mte_orogsh
exregional_make_sfc_climosh
‘GET_EXTRN_MDL_FILES (1) |-.._
¥ 29| exregional_get_extrn_md_files.sh
‘GET_EXTRN_MDL_FILES (L8C) =~
¥ exregional_make_ics.sh
WAKE ics
[exregional_make_tbessh
VAKE_L5CS -
¥ »[exegional_run_festsh
RUN_FesT -
¥ ‘exregional_run_post.sh
RUN_POST -

_ Jjobs

_images/FV3regional_workflow_gen.png
Workflow generation (generate_FV3LAM_wflow.sh)

Source_util_funcs.sh

2 5 .
set_FV3nm_sfc_climo_filenamessh i)

¥ set_cycle_dates sh
set_FVanml_stock_params.sh v
v set_gridparams GFDLgridsh
create_diag_table_files.sh k72
7 set_gridparams_E5Ggridsh

setupsh —
ik fsh

¥
Setup YAMLcompliantstrings pr——

12 ¥
Generae the actalworkliow rocoto confi_defaultsh
XML filefrom the tempiatefile -
i ini_template.py) confiash

'] X2
Create symiis: vald_param_vls sh
- Modue files v

- Wordiow "“"‘; seript ENC_GRID_NAVE > PREDEF_GRID_NAVE
¥

Copy Fix iles to FiXam’

Setvarious directories: FIXgsm,

2 TOPO_DIR, SFC_CLIMO_INPUT_DIR
Copy templates of various input iles: v
- Data_table set_predef grid_porams sh
-~ Field_table v
- NEMS configuration Set FiXan, FIXAM for NCO mode
- copp_suite v
2 Setthe forcas nput iles
Copy the forecast model executable k2
(NEWS.exe') Setcyle-ndependent parameters
7 v
o pe—— =y GRID_GEN_METHODwith halos
namelistiles k2
7 Check the vaious parameters
Create a new FV3 namelist ile. L2
“iputnml (set_namelistpy) Generate shelseipts

_images/RRFS_CONUS_13km.sphr.native_wrtcmp.png
150°W

135°W 120°W 105°W 90°W 75°W 60°W 45°W

45°N

40°N —

35°N —

30°N

25°N —

20°N —

15°N —

_images/RRFS_CONUS_25km.sphr.native_wrtcmp.png
150°W 135°W 120°W 105°W 90°W 75°W 60°W 45°W

45°N

40°N —

35°N —

30°N

25°N —

20°N —

15°N —

nav.xhtml

 Table of Contents

 		
 UFS Short-Range Weather App Users Guide

 		
 Introduction

 		
 Pre-processor Utilities and Initial Conditions

 		
 Forecast Model

 		
 Post-processor

 		
 Visualization Example

 		
 Build System and Workflow

 		
 User Support, Documentation, and Contributing Development

 		
 Future Direction

 		
 How to Use This Document

 		
 Workflow Quick Start

 		
 Download the UFS SRW Application Code

 		
 Set up the Build Environment

 		
 Build the Executables

 		
 Generate the Workflow Experiment

 		
 Set up config.sh file

 		
 Set up the Python and other Environment Parameters

 		
 Run the generate_FV3LAM_wflow.sh script

 		
 Run the Workflow Using Rocoto

 		
 Plot the Output

 		
 Code Repositories and Directory Structure

 		
 Hierarchical Repository Structure

 		
 Directory Structure

 		
 Regional Workflow Sub-Directories

 		
 Experiment Directory Structure

 		
 Short-Range Weather Application Overview

 		
 Download from GitHub

 		
 External Components

 		
 Building the Executables for the Application

 		
 Grid-specific Configuration

 		
 Case-specific Configuration

 		
 Default configuration: config_defaults.sh

 		
 User-specific configuration: config.sh

 		
 Python Environment for Workflow

 		
 Generating a Regional Workflow Experiment

 		
 Steps to a Generate a New Experiment

 		
 Description of Workflow Tasks

 		
 Launch of Workflow

 		
 Launch with the launch_FV3LAM_wflow.sh script

 		
 Manually launch by calling the rocotorun command

 		
 Run the Workflow Using the Stand-alone Scripts

 		
 Configuring the Workflow: config.sh and config_defaults.sh

 		
 Platform Environment

 		
 Parameters for Running Without a Workflow Manager

 		
 Cron-Associated Parameters

 		
 Directory Parameters

 		
 NCO Mode Parameters

 		
 Pre-Processing File Separator Parameters

 		
 File Name Parameters

 		
 Foreast Parameters

 		
 Initial and Lateral Boundary Condition Generation Parameters

 		
 User-Staged External Model Directory and File Parameters

 		
 CCPP Parameter

 		
 Grid Generation Parameters

 		
 Computational Forecast Parameters

 		
 Write-Component (Quilting) Parameters

 		
 Predefined Grid Parameters

 		
 Pre-existing Directory Parameter

 		
 Verbose Parameter

 		
 Pre-Processing Parameters

 		
 Surface Climatology Parameter

 		
 Fixed File Parameters

 		
 Workflow Task Parameters

 		
 Customized Post Configuration Parameters

 		
 Halo Blend Parameter

 		
 FVCOM Parameter

 		
 Compiler Parameter

 		
 Limited Area Model (LAM) Grids: Predefined and User-Generated Options

 		
 Predefined Grids

 		
 Creating User-Generated Grids

 		
 Input and Output Files

 		
 Input Files

 		
 Initial and Boundary Condition Files

 		
 Pre-processing (UFS_UTILS)

 		
 UFS Weather Model

 		
 Unified Post Processor (UPP)

 		
 Workflow

 		
 Output Files

 		
 Initial and boundary condition files

 		
 Pre-processing (UFS_UTILS)

 		
 UFS Weather Model

 		
 Unified Post Processor (UPP)

 		
 Downloading and Staging Input Data

 		
 Static Files

 		
 Initial Condition Formats and Source

 		
 Initial and Lateral Boundary Condition Organization

 		
 Default Initial and Lateral Boundary Conditions

 		
 Running the App for Different Dates

 		
 Staging Initial Conditions Manually

 		
 Coexistence of Multiple Files for the Same Date

 		
 Best Practices for Conserving Disk Space and Keeping Files Safe

 		
 Configuring a New Platform

 		
 Installing NCEPLIBS-external

 		
 Installing NCEPLIBS

 		
 Building the UFS Short-Range Weather Application (UFS SRW App)

 		
 Setting Up Your Python Environment

 		
 Running Without a Workflow Manager: Generic Linux and macOS Platforms

 		
 Running on a New Platform with Rocoto Workflow Manager

 		
 Software/Operating System Requirements

 		
 Workflow End-to-End (WE2E) Tests

 		
 Graphics Generation

 		
 Plotting output from one experiment

 		
 Plotting differences from two experiments

 		
 Submitting plotting scripts through a batch system

 		
 FAQ

 		
 How do I turn On/Off the Cycle-Independent Workflow Tasks

 		
 How do I define an experiment name?

 		
 How do I change the Suite Definition File (SDF)?

 		
 How do I restart a DEAD task?

 		
 How do I change the grid?

 		
 Additional Rocoto Information

 		
 rocotorun

 		
 rocotostat

 		
 rocotocheck

 		
 rocotorewind

 		
 rocotoboot

 		
 Glossary

_static/FV3LAM_wflow_input_path.png
Migratory Route of the Input Files

Qg sh/confssh]

Set[CCPP_PHYS_SUITE]

Setthe template file paths:
* DIAG_TABLE_TMPL_FP={TMPL_DIR}/diag_table.[CCPP_PHYS_SUITE]

~ FIELD_TABLE_TMPL_FP={TMPL_DIR}/field_table.[CCPP_PHYS_SUITE]

* MODEL_CONFIG_TMPL_FP=(TMPL_DIR}/model_configure.(CCPP_PHYS_SUITE]
« NEMS_CONFIG_TMPL_FP=(TMPL_DIR)/nemsconfigure

* FV3_NML_BASE_FP=(TMPL_DIR)/input.nml.FV3

13

* Copy 'FIELD_TABLE_TMPL_FP"and ‘NEMS_CONFIG_TMPL_FP'to
(EXPTDIR}/field_table’ and(EXPTOIR}/nems_configure'.
+ Set‘Input.nmI” with ‘input.nmLFV3"and "FV3.inputymi’ and move it to (EXPTDIR).

Jscripts/exregional_run_fcst.sh

* Link feld_table’, nems.configure’, and ‘iput o’ to {CYCLE_DIRY.

+ Copy ‘DIAG_TABLE_TMPL_FP’and ‘MODEL_CONFIG_TMPL_FP'to
(CYCLE_DIR)/diag_table’ and ‘(CYCLE_DIR}/model_configure.

* Update variables with (EXPTOIR}/var_defn.sh'

_)

_static/FV3LAM_wflow_overall.png
Regional
workflow
tem built?

Pre-defined
grid exists?

YES

Modify ‘config.sh'

Python.
environment
loaded?

NO

Generate a regional workflow.

2

Run the regional workflow

Clone from Gitub

Run checkout_externals”

Run cmake/make.

Define gridparametersin
‘set_prede_grid_param.sh'

2

Modify “alid_param_ls.sh"

Load modules and activate
regional_worklow

‘generats_FV3LAM_wlowsh'

“launch_FV3LAM_wlow.sh’

_images/RRFS_CONUS_3km.sphr.native_wrtcmp.png
150°W 135°W 120°W 105°W 90°W 75°W 60°W 45°W

1 1 | | 1 | | |
45°N | ‘L}” L 45N
40°N —| 40°N
35°N | - 35N
30°N - 30°N
25°N |) - 25N
20°N i - 20N
| IV 1 ¥ . - -
A\ " 4%,
15°N | ‘.‘,’ _ g el ST

_static/FV3LAM_wflow_flowchart.png
'WORKFLOW ({EXPTDIR}/FV3LAM_wflow.xml')

TRUE,

MAKE_GRID

MAKE_OROG “" ‘exregional_make_grid.sh
MAKE_SFC_CLIMO [exresonal mte_orogsh
exregional_make_sfc_climosh
‘GET_EXTRN_MDL_FILES (1) |-.._
¥ 29| exregional_get_extrn_md_files.sh
‘GET_EXTRN_MDL_FILES (L8C) =~
¥ exregional_make_ics.sh
WAKE ics
[exregional_make_tbessh
VAKE_L5CS -
¥ »[exegional_run_festsh
RUN_FesT -
¥ ‘exregional_run_post.sh
RUN_POST -

_ Jjobs

_static/RRFS_CONUS_25km.sphr.native_wrtcmp.png
150°W 135°W 120°W 105°W 90°W 75°W 60°W 45°W

45°N

40°N —

35°N —

30°N

25°N —

20°N —

15°N —

_static/RRFS_CONUS_3km.sphr.native_wrtcmp.png
150°W 135°W 120°W 105°W 90°W 75°W 60°W 45°W

1 1 | | 1 | | |
45°N | ‘L}” L 45N
40°N —| 40°N
35°N | - 35N
30°N - 30°N
25°N |) - 25N
20°N i - 20N
| IV 1 ¥ . - -
A\ " 4%,
15°N | ‘.‘,’ _ g el ST

_static/FV3regional_workflow_gen.png
Workflow generation (generate_FV3LAM_wflow.sh)

Source_util_funcs.sh

2 5 .
set_FV3nm_sfc_climo_filenamessh i)

¥ set_cycle_dates sh
set_FVanml_stock_params.sh v
v set_gridparams GFDLgridsh
create_diag_table_files.sh k72
7 set_gridparams_E5Ggridsh

setupsh —
ik fsh

¥
Setup YAMLcompliantstrings pr——

12 ¥
Generae the actalworkliow rocoto confi_defaultsh
XML filefrom the tempiatefile -
i ini_template.py) confiash

'] X2
Create symiis: vald_param_vls sh
- Modue files v

- Wordiow "“"‘; seript ENC_GRID_NAVE > PREDEF_GRID_NAVE
¥

Copy Fix iles to FiXam’

Setvarious directories: FIXgsm,

2 TOPO_DIR, SFC_CLIMO_INPUT_DIR
Copy templates of various input iles: v
- Data_table set_predef grid_porams sh
-~ Field_table v
- NEMS configuration Set FiXan, FIXAM for NCO mode
- copp_suite v
2 Setthe forcas nput iles
Copy the forecast model executable k2
(NEWS.exe') Setcyle-ndependent parameters
7 v
o pe—— =y GRID_GEN_METHODwith halos
namelistiles k2
7 Check the vaious parameters
Create a new FV3 namelist ile. L2
“iputnml (set_namelistpy) Generate shelseipts

_static/RRFS_CONUS_13km.sphr.native_wrtcmp.png
150°W

135°W 120°W 105°W 90°W 75°W 60°W 45°W

45°N

40°N —

35°N —

30°N

25°N —

20°N —

15°N —

